{"title":"Agent script generation using descriptive text documents","authors":"J. Balint, Y. Gingold, J. Allbeck","doi":"10.1145/2668064.2677076","DOIUrl":"https://doi.org/10.1145/2668064.2677076","url":null,"abstract":"When designing games, artists exert large efforts to create visually compelling scenes. Work such as WordsEye [Coyne and Sproat 2001] can assist artists by parsing natural language texts into static scenes. Complementary to this endeavour is the population of that environment by simulation authors. Adding agents to an environment with plausible behaviors is a time consuming process, as most require individual scripts to control their behavior. This generally degrades variability, as scripts are re-used. In order to assist in creating commands and scenes for virtual actors, we propose a method that can create scripts for agents to plausibly act within a virtual environment. This work is inspired by [Ma 2006], which provides an action to a virtual agent from a single sentence. However, our method works for several agents over longer periods of time.","PeriodicalId":138747,"journal":{"name":"Proceedings of the 7th International Conference on Motion in Games","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117016327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jose Guillermo Rangel Ramirez, Devin Lange, Panayiotis Charalambous, Claudia Esteves, J. Pettré
{"title":"Optimization-based computation of locomotion trajectories for crowd patches","authors":"Jose Guillermo Rangel Ramirez, Devin Lange, Panayiotis Charalambous, Claudia Esteves, J. Pettré","doi":"10.1145/2668064.2668094","DOIUrl":"https://doi.org/10.1145/2668064.2668094","url":null,"abstract":"Over the past few years, simulating crowds in virtual environments has become an important tool to give life to virtual scenes; be it movies, games, training applications, etc. An important part of crowd simulation is the way that people move from one place to another. This paper concentrates on improving the crowd patches approach proposed by Yersin et al. [Yersin et al. 2009] that aims on efficiently animating ambient crowds in a scene. This method is based on the construction of animation blocks (called patches) concatenated together under some constraints to create larger and richer animations with limited run-time cost. Specifically, an optimization based approach to generate smooth collision free trajectories for crowd patches is proposed. The contributions of this work to the crowd patches framework are threefold; firstly a method to match the end points of trajectories based on the Gale-Shapley algorithm [Gale and Shapley 1962] is proposed that takes into account preferred velocities and space coverage, secondly an improved algorithm for collision avoidance is proposed that gives natural appearance to trajectories and finally a cubic spline approach is used to smooth out generated trajectories. We demonstrate several examples of patches and how they were improved by the proposed method, some limitations and directions for future improvements.","PeriodicalId":138747,"journal":{"name":"Proceedings of the 7th International Conference on Motion in Games","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128933539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andrew W. Feng, Gale M. Lucas, S. Marsella, Evan A. Suma, C. Chiu, D. Casas, Ari Shapiro
{"title":"Acting the part: the role of gesture on avatar identity","authors":"Andrew W. Feng, Gale M. Lucas, S. Marsella, Evan A. Suma, C. Chiu, D. Casas, Ari Shapiro","doi":"10.1145/2668064.2668102","DOIUrl":"https://doi.org/10.1145/2668064.2668102","url":null,"abstract":"Recent advances in scanning technology have enabled the widespread capture of 3D character models based on human subjects. However, in order to generate a recognizable 3D avatar, the movement and behavior of the human subject should be captured and replicated as well. We present a method of generating a 3D model from a scan, as well as a method to incorporate a subjects style of gesturing into a 3D character. We present a study which shows that 3D characters that used the gestural style as their original human subjects were more recognizable as the original subject than those that don't.","PeriodicalId":138747,"journal":{"name":"Proceedings of the 7th International Conference on Motion in Games","volume":"144 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124608281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Computing shortest path maps with GPU shaders","authors":"C. Camporesi, Marcelo Kallmann","doi":"10.1145/2668064.2668092","DOIUrl":"https://doi.org/10.1145/2668064.2668092","url":null,"abstract":"We present in this paper a new GPU-based approach to compute Shortest Path Maps (SPMs) from a source point in a polygonal domain. Our method takes advantage of GPU polygon rasterization with shader programming. After encoding the SPM in the frame buffer, globally shortest paths are efficiently computed in time proportional to the number of vertices in the path, and length queries are computed in constant time. We have evaluated our method in multiple environments and our results show a significant speedup in comparison to previous approaches.","PeriodicalId":138747,"journal":{"name":"Proceedings of the 7th International Conference on Motion in Games","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129073537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Computing high-quality paths in weighted regions","authors":"N. Jaklin, M. Tibboel, Roland Geraerts","doi":"10.1145/2668064.2668097","DOIUrl":"https://doi.org/10.1145/2668064.2668097","url":null,"abstract":"The Weighted Region Problem is defined as the problem of finding a cost-optimal path in a weighted planar polygonal subdivision. Searching for paths on a grid representation of the scene is fast and easy to implement. However, grid representations do not capture the exact geometry of the scene. Hence, grid paths can be inaccurate or might not even exist at all. Methods that work on an exact representation of the scene can approximate an optimal path up to an arbitrarily small ε-error. However, these methods are computationally inefficient and thus not well-suited for real-time applications. In this paper, we analyze the quality of optimal paths on a 8-neighbor-grid. We prove that the costs of such a path in a scene with weighted regions can be arbitrarily high in the general case. If all regions are aligned with the grid, we prove that the costs are at most (4+[EQUATION]) times the costs of an optimal path. In addition, we present a new hybrid method called Vertex-based Pruning (VBP). VBP computes paths that are ε-optimal inside a pruned subset of the scene. Experiments show that VBP paths can be computed at interactive rates, and are thus well-suited as an input for advanced path-following strategies in robotics, crowd simulation or gaming applications.","PeriodicalId":138747,"journal":{"name":"Proceedings of the 7th International Conference on Motion in Games","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115668542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"How do stylistic motions differ numerically from neutral ones?","authors":"Aline Normoyle, N. Badler","doi":"10.1145/2668064.2677080","DOIUrl":"https://doi.org/10.1145/2668064.2677080","url":null,"abstract":"Viewers effortlessly decouple action from style for human motion. Regardless of whether style refers to the subtle differences between individuals (John Wayne's walk versus Charlie Chaplin's walk) or to the manner in which the same action is expressed (such as a sad walk versus a nervous walk), the core intent of an action is readily recognizable.","PeriodicalId":138747,"journal":{"name":"Proceedings of the 7th International Conference on Motion in Games","volume":"68 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126041482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Physics based virtual cutting using j-integral method for gaming applications","authors":"P. Shrivastava, Sukhendu Das","doi":"10.1145/2668064.2677078","DOIUrl":"https://doi.org/10.1145/2668064.2677078","url":null,"abstract":"Powerful graphic cards have enabled the game engine developers to add deformable assets. Many games require the players to cut/chop/slash game assets. To render interaction of deformable assets with sharp weapons they use pre-defined fracture patterns. These pre-defined fracture patterns are used to break/cut objects and the use of physics is limited due to computational costs of the virtual cutting process. In this work, we present a low cost solution for performing physics based virtual cutting on deformable assets. Our aim is to provide a highly tunable physics based virtual cutting algorithm on GPU to meet the varying needs of a game engine.","PeriodicalId":138747,"journal":{"name":"Proceedings of the 7th International Conference on Motion in Games","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132301722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Proceedings of the 7th International Conference on Motion in Games","authors":"Ari Shapiro, N. Amato, J. Hodgins","doi":"10.1145/2668064","DOIUrl":"https://doi.org/10.1145/2668064","url":null,"abstract":"The Seventh International Conference on Motion in Games (MIG) is being held at the University of Southern California's Institute for Creative Technologies in Los Angeles, California, USA from November 6-8, 2014. MIG 2014 is sponsored by ACM SIGGRAPH, with papers appearing in the ACM digital library. \u0000 \u0000Games have become a very important medium for both education and entertainment. Motion plays a critical role in computer games. Characters move around, objects are manipulated or move due to physical constraints, entities are animated, and the camera moves through the scene. Even the motion of the player nowadays is used as input to games. Motion is currently studied in many different areas of research, including graphics and animation, game technology, robotics, simulation, computer vision and also physics, psychology, and urban studies. Cross-fertilization between these communities can considerably advance the state of the art in this area. The goal of the Motion in Games conference is to bring together researchers from these various fields to present the most recent results and to initiate collaboration.","PeriodicalId":138747,"journal":{"name":"Proceedings of the 7th International Conference on Motion in Games","volume":"17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133846318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Trade-offs between responsiveness and naturalness for player characters","authors":"Aline Normoyle, S. Jörg","doi":"10.1145/2668064.2668087","DOIUrl":"https://doi.org/10.1145/2668064.2668087","url":null,"abstract":"Real-time animation controllers are fundamental for animating characters in response to player input. However, the design of such controllers requires making trade-offs between the naturalness of the character's motions and the promptness of the character's response. In this paper, we investigate the effects of such tradeoffs on the players' enjoyment, control, satisfaction, and opinion of the character in a simple platform game. In our first experiment, we compare three controllers having the same responsiveness, but varying levels of naturalness. In the second experiment, we compare three controllers having increasing realism but at the expense of decreased responsiveness. Not surprisingly, our least responsive controller negatively affects players' performance and perceived ability to control the character. However, we also find that players are most satisfied with their own performance using our least natural controller, in which the character moves around the environment in a static pose; that differences in animation can significantly alter players' enjoyment with responsiveness being equal; and that players do not report increased motion quality with our most natural controller, despite viewers outside of a game context rating the same controller as significantly more natural than our other conditions.","PeriodicalId":138747,"journal":{"name":"Proceedings of the 7th International Conference on Motion in Games","volume":"120 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116680430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alain Juarez-Perez, Andrew W. Feng, Marcelo Kallmann, Ari Shapiro
{"title":"Deformation, parameterization and analysis of a single locomotion cycle","authors":"Alain Juarez-Perez, Andrew W. Feng, Marcelo Kallmann, Ari Shapiro","doi":"10.1145/2668064.2677082","DOIUrl":"https://doi.org/10.1145/2668064.2677082","url":null,"abstract":"We present preliminary results of a framework that can synthesize parameterized locomotion with controllable quality from simple deformations over a single step cycle. Our approach enforces feet constraints per phase in order to appropriately perform motion deformation operations, resulting in a generative and controllable model that maintains the style of the input motion. The method is lightweight and has quantifiable motion quality related to the amount of deformation used. It only requires a single cycle of locomotion. An analysis of the deformation is presented with the quantification of the valid portion of the deformed motion space, informing on the parameterization coverage of the deformable motion cycle.","PeriodicalId":138747,"journal":{"name":"Proceedings of the 7th International Conference on Motion in Games","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114521099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}