{"title":"基于物理的基于j积分方法的虚拟切割游戏应用","authors":"P. Shrivastava, Sukhendu Das","doi":"10.1145/2668064.2677078","DOIUrl":null,"url":null,"abstract":"Powerful graphic cards have enabled the game engine developers to add deformable assets. Many games require the players to cut/chop/slash game assets. To render interaction of deformable assets with sharp weapons they use pre-defined fracture patterns. These pre-defined fracture patterns are used to break/cut objects and the use of physics is limited due to computational costs of the virtual cutting process. In this work, we present a low cost solution for performing physics based virtual cutting on deformable assets. Our aim is to provide a highly tunable physics based virtual cutting algorithm on GPU to meet the varying needs of a game engine.","PeriodicalId":138747,"journal":{"name":"Proceedings of the 7th International Conference on Motion in Games","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physics based virtual cutting using j-integral method for gaming applications\",\"authors\":\"P. Shrivastava, Sukhendu Das\",\"doi\":\"10.1145/2668064.2677078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Powerful graphic cards have enabled the game engine developers to add deformable assets. Many games require the players to cut/chop/slash game assets. To render interaction of deformable assets with sharp weapons they use pre-defined fracture patterns. These pre-defined fracture patterns are used to break/cut objects and the use of physics is limited due to computational costs of the virtual cutting process. In this work, we present a low cost solution for performing physics based virtual cutting on deformable assets. Our aim is to provide a highly tunable physics based virtual cutting algorithm on GPU to meet the varying needs of a game engine.\",\"PeriodicalId\":138747,\"journal\":{\"name\":\"Proceedings of the 7th International Conference on Motion in Games\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 7th International Conference on Motion in Games\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2668064.2677078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th International Conference on Motion in Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2668064.2677078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Physics based virtual cutting using j-integral method for gaming applications
Powerful graphic cards have enabled the game engine developers to add deformable assets. Many games require the players to cut/chop/slash game assets. To render interaction of deformable assets with sharp weapons they use pre-defined fracture patterns. These pre-defined fracture patterns are used to break/cut objects and the use of physics is limited due to computational costs of the virtual cutting process. In this work, we present a low cost solution for performing physics based virtual cutting on deformable assets. Our aim is to provide a highly tunable physics based virtual cutting algorithm on GPU to meet the varying needs of a game engine.