{"title":"Influence of hydrothermal fatigue on mechanical properties and damage mechanisms of hemp-reinforced biocomposites and comparison with glass-reinforced composites","authors":"Quentin Drouhet, Fabienne Touchard, Laurence Chocinski-Arnault","doi":"10.1177/10567895241280375","DOIUrl":"https://doi.org/10.1177/10567895241280375","url":null,"abstract":"The aim of this work was to evaluate the tensile properties and the damage mechanisms of hemp and glass-reinforced composites when they were subjected to hydrothermal fatigue. Each wet/dry cycle consisted in immersing samples in water at 60°C during 12 days and drying them in an oven at 40°C during 2 days. Three different matrices (Epolam, Greenpoxy and Elium) were studied with two reinforcement orientations (±45° and 0°/90°). Gravimetric measurements were performed during 30 wet/dry cycles to determine the evolution of the parameters of the Fick diffusion model. Repeated progressive tensile loading tests instrumented with an acoustic emission setup were also carried out. Damage was investigated by means of SEM and micro-CT. Results showed that hydrothermal fatigue affects significantly the tensile properties of all the composites studied. Hemp/Greenpoxy appears to better resist to hydrothermal fatigue while the hemp/Elium behavior is more impacted. Moreover, contrary to what might be expected, glass/Epolam samples are not the least sensitive to hydrothermal fatigue.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":"74 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142233299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zoran B Perović, Dragoslav M Šumarac, Stanko B Ćorić, Petar M Knežević, Maosen Cao, Ismail Nurković
{"title":"Energy based damage model for low-cycle fatigue of ductile materials","authors":"Zoran B Perović, Dragoslav M Šumarac, Stanko B Ćorić, Petar M Knežević, Maosen Cao, Ismail Nurković","doi":"10.1177/10567895241282416","DOIUrl":"https://doi.org/10.1177/10567895241282416","url":null,"abstract":"A uniaxial material model for fatigue damage accumulation, established on the connection of unit elements, is presented in this paper. Although these units are regarded as micro-elements in the proposed model, they are based on a hysteretic operator that enables calculating hysteretic energy loss as an analytical expression. Further, this unit element represents a mechanical model with elastoplastic damage behavior in function of strain. The second level of modeling is defined by the connection of these units (micro-elements) with different values of total energy dissipated at failure. By changing the distribution of dissipated energy limit, various fatigue damage evolution laws are developed. Calculation of total and hysteretic energy loss in one loading cycle is also affected by fatigue damage as the varying number of unit elements are been eliminated when their maximum dissipation energy is reached. Material parameters for the model were defined based on the experimental monotonic and cyclic stress-strain tests, still, detailed comparison was not performed as the main advantage and aim of the paper was the development of the method for assessment of damage evolution in fatigue analysis. On the other hand, the number of cycles to failure ( N<jats:sub>f</jats:sub>) and total heat dissipation are compared in both qualitative and quantitative aspects with experimental results. Finally, based on the proposed model, mean strain and load sequence effect diagrams were constructed. It is shown that the proposed model can provide a reliable estimation of fatigue life in the low-cycle regime of loading. The maximum error for the calculated N<jats:sub>f</jats:sub> was 3% for constant strain loading for experiments with strain amplitude less than 5%. In load sequence fatigue life estimation, the proposed model demonstrated good accuracy, with a maximum error of 34%. Further, obtained results were achieved with different types of damage evolution that could be defined for the same material and fatigue life.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":"62 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142233440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analysis of dynamic disturbance and multistage shear creep damage evolution law of the weak intercalated layers in slope under the influence of coupled damage effect","authors":"Zeqi Wang, Bin Hu, Jing Li, Kuikui Chen, Zhuoxi Zhong, Xiangyu Zhang","doi":"10.1177/10567895241277226","DOIUrl":"https://doi.org/10.1177/10567895241277226","url":null,"abstract":"Based on the damage characteristics of multistage shear creep in weak intercalated layers (carbonaceous mud shale) of slopes under the influence of dynamic disturbance, the effective bearing area method was used. A new coupled damage equation (dynamic disturbance damage, shear creep damage, and initial damage) was established through further derivation, and its applicability was demonstrated. The calculation method for the relevant coupled damage degrees was also provided. Furthermore, by targeting the three coupled damage factors and extending the Kachanov damage law, a time-dependent damage evolution equation for weak intercalated layers under the influence of the three coupled damage effects was established. The influence of different dynamic disturbance intensities on the evolution of multistage shear creep damage in weak intercalated layers of slopes under the influence of coupled damage effects was analysed. The results show that the damage to the rock mass caused by dynamic disturbance mainly occurs in the low-frequency stage (40–80 Hz). The instantaneous damage caused by dynamic disturbance to the shear plane of weak intercalated layers is not only affected by the intensity of the dynamic disturbance but also limited by the magnitude of the shear creep load. The influence of the dynamic disturbance intensity on the entire process of multistage shear creep damage of weak intercalated layers was analysed. With increasing of dynamic disturbance intensity, the cumulative coupled damage at the end of shear creep at all levels gradually exhibits linear evolution. The time-dependent coupling damage evolution process of weak intercalated layers was quantitatively characterized.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":"34 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142166369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effects of high temperature and strain rate on the impact-induced inter-laminar shear behavior of plain woven CF/PEEK thermoplastic composites","authors":"Xu Zhang, Zhongxiang Pan, Jiajia Yu, Chengcai Yang, Zhenyu Wu","doi":"10.1177/10567895241274780","DOIUrl":"https://doi.org/10.1177/10567895241274780","url":null,"abstract":"This paper aims to investigate the interlaminar shear properties and failure mechanisms of plain woven carbon fabric/polyetheretherketone (CF/PEEK) thermoplastic composites under high strain rate impact loads at different temperatures (25°C, 120°C, 295°C). A reliable hot air flow heating method with SHPB is creatively employed for short beam shear experiments. A multi-scale model was developed to predict the impact behavior of plain CF/PEEK composites. Both results show that the thermoplastic composites have strong strain rate and temperature dependence, and which are more sensitive to temperature effect. As the temperature increases, the thermoplastic composites are mainly affected by the softening effect of the matrix due to the glass transition temperature. The shear modulus and peak stress appear to decline at high temperatures, while the failure strain tends to increase. The damage mode changes from interlayer delamination cracking at the glassy state to shear fracture and fiber pullout at a highly elastic state. As the strain rate increases, the failure strain decreases, while the shear modulus and peak stress show the opposite trend. Fiber bundle breakage, debonding, matrix cracking, and significant interlayer delamination occur at high strain rates.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":"8 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142166370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pingkuang Luo, Diyuan Li, Jinyin Ma, Junjie Zhao, Abdul Jabbar
{"title":"Experimental study on energy and damage evolution of dry and water-saturated dolomite from a deep mine","authors":"Pingkuang Luo, Diyuan Li, Jinyin Ma, Junjie Zhao, Abdul Jabbar","doi":"10.1177/10567895241277948","DOIUrl":"https://doi.org/10.1177/10567895241277948","url":null,"abstract":"The deformation and failure of a rock is closely related to the strain energy consumption during the load process of rock. To investigate the effect of water on energy evolution and damage characteristics of dolomite samples from a deep mine, the uniaxial compression tests were carried out on dry and water-saturated dolomite samples at different burial depths (900 m–1200 m). The effects of water on the evolution characteristics of elastic and dissipative energy ratios ( U<jats:sub>e</jats:sub>/ U and U<jats:sub>d</jats:sub>/ U) during rock deformation and failure was analyzed. Based on the variation rate of damage factor ( D<jats:sub>f</jats:sub>), a new brittleness index is proposed, which can effectively characterize the brittleness characteristics of water-bearing dolomite. The results show that the uniaxial compressive strength and elastic modulus of the water-saturated dolomite are significantly reduced compared to dry sample. The energy and damage evolution process of dolomite can be divided into four stages: initial damage stage, stable damage stage, pre-peak accelerated damage stage and post-damage stage. The variation rate of damage factor of the rock samples in the stable damage stage and the pre-peak accelerated damage stage appeared to increase significantly after water saturation treatment. Compared with water-saturated samples, more pronounced energy hardening characteristics and brittleness characteristics were observed in dry samples. In addition, the possible impact on the stability of deep rock engineering after the deterioration of rock mechanical properties and energy storage properties caused by water was analyzed. Groundwater can somewhat reduce rock burst proneness. However, it also has the potential to lead to greater rock engineering destabilization and failure hazards.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":"41 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142166405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shen Yan, Dajiang Geng, Ning Dai, Minjian Long, Zhicheng Bai
{"title":"An improved dual shear unified strength model (IDSUSM) considering strain softening effect","authors":"Shen Yan, Dajiang Geng, Ning Dai, Minjian Long, Zhicheng Bai","doi":"10.1177/10567895241280369","DOIUrl":"https://doi.org/10.1177/10567895241280369","url":null,"abstract":"This study proposes an improved dual shear unified strength model by introducing the plastic internal variable which reflects the collective effects of strain softening, intermediate principal stress and unequal strength under tension and compression. The improved model is then simplified into simple forms for typical stress states, including uniaxial tension and compression, plane stress pure shear and tri-axial stress states. The smooth method and conjugate gradient method are utilized to facilitate its numerical implementation, avoiding numerical singularity and non-convergence in the solution process. The physical meanings of the parameters are further clarified and their values for self-compacting concrete are determined from the results of triaxial compression tests through a combination of direct determination, equation solution and back propagation (BP) neural network optimization. Validated against the test results, the improved model gives a more accurate prediction than the traditional dual shear unified strength model and Mohr-Coulomb model, in terms of both the overall trend and representative values. Validation results show that the improved model is applicable to materials for which the compressive strength is greater than the tensile strength and the tensile strength is greater than the shear strength.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":"72 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142152407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Interaction of defects, martensitic transformation and slip in metastable body centred cubic crystals of Ti-10V-2Fe-3Al: A study via crystal plasticity finite element methods (CPFEM)","authors":"P Christie, MA Siddiq, RM McMeeking, ME Kartal","doi":"10.1177/10567895241275373","DOIUrl":"https://doi.org/10.1177/10567895241275373","url":null,"abstract":"Metastable β titanium alloys are widely applied in many industries. These alloys can have plastic deformation via dislocation slip, twinning, stress-induced martensite (SIM), or a combination of these. These alloys fail in a ductile manner via a process of void nucleation, growth, and coalescence. Inherent defects, such as voids, are commonly attributed to poor mechanical properties. In this study, aspects of plastic anisotropy in damage accumulation are investigated for metastable crystals that deform by combined slip and SIM. The focus of this study is to understand the evolution of damage due to inherent voids in metastable Ti-10V-2Fe-3Al single crystals. This investigation is conducted using crystal plasticity-based 3D finite element (FE) calculations. A unit-cell FE model involving a spherical void is deformed under constant stress triaxiality and lode parameter. We investigated four triaxiality values at differing lode parameters in three crystal orientations. The void growth was found to be heavily dependent on crystal orientation at low triaxialities. At higher triaxialities, SIM is found to inhibit the void growth via accommodation of the required deformation in the surrounding material. Orientations aligned favourable with SIM undergo significantly less void growth. The accommodation of deformation in the surrounding matrix was found to help preserve the integrity of the void, preventing the localisation of deformation around the void. At lower lode parameter and at higher stress triaxiality this impedes the exponential growth of the void. While, at higher lode parameter with low triaxiality SIM was found to delay the collapse of the void into a crack like morphology. This study not only deepens our understanding of the mechanical behaviour of metastable β titanium alloys, but also unveils the complex interplay between inherent defects, stress-induced martensite, and slip-based plasticity within their crystalline structure, offering fresh perspectives on enhancing material performance.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":"21 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142152406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An enhanced direct method for ductile damage measurement","authors":"M Dastjerdi, F Haji Aboutalebi, MS Sadeghi Nezhad","doi":"10.1177/10567895241276444","DOIUrl":"https://doi.org/10.1177/10567895241276444","url":null,"abstract":"Damage measurement of materials is a crucial challenge for researchers and engineers in manufacturing industries. In this study, based on the image processing technique, a developed approach for determining the Lemaitre’s ductile damage parameter by the direct measurement method is proposed. For this purpose, first, the micrographs pictures are provided by a scanning electron microscope to attain the damage evolution behavior of St37 steel. Then, prediction results of the suggested method and the Lemaitre’s direct approach as well as the microhardness technique and also a lately published numerical method in damage propagation, crack initiation, and ductile fracture of a few tensile samples are compared with the corresponding experimental tests. The comparison reveals the higher efficiency and accuracy of the current approach. Therefore, it is concluded that the new presented method is a reliable approach to achieve the Lemaitre’s ductile damage parameter and predict the damage evolution behavior of ductile materials.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":"9 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142144331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Brittleness evaluation and damage evolution of sandstone under hydromechanical coupling","authors":"Kuan Zhang, Wei Wang, Yajun Cao, Shifan Liu, Xuelei Duan","doi":"10.1177/10567895241277224","DOIUrl":"https://doi.org/10.1177/10567895241277224","url":null,"abstract":"Investigating the brittleness characteristics and damage evolution of deep rock masses under hydromechanical coupling has important significance. The variations in mechanical properties and brittleness characteristics of sandstone under different confining pressures and pore pressures were studied. Based on the stress threshold evolution and energy conversion analysis of the full stress-strain behavior characteristics of the rock, the new brittleness evaluation indexes were proposed, which effectively described the rock brittle failure mode and verified the reliability and applicability of the brittleness index. Additionally, from the perspective of rock pore micro-elements and the growth of matrix particle defects, the strain statistical damage theory was introduced to establish a rock statistical damage evolution model capable of accounting for the influence of pore pressure, thereby effectively capturing the nonlinear soft hardening of porous rocks under hydraulic coupling conditions. The correlation between rock brittleness and rock soft and hardening characteristics was reasonably expressed by constructing a new brittleness evaluation index, discovered from the relationship between rock damage parameters and brittleness characteristics. Eventually, based on the proposed nonlinear expression and statistical damage evolution model, the development trend of sandstone lateral strain is predicted well. The theoretical validation has good consistency with the experimental data and illustrates the rationality of the model.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":"381 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142138194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Behavior monitoring of flax fiber reinforced composites by guided waves","authors":"Driss Hana, Beyaoui Moez, Kesentini Zeineb, El Mahi Abderrahim, Bentahar Mourad, Haddar Mohamed, Deba Datta Mandal","doi":"10.1177/10567895241275365","DOIUrl":"https://doi.org/10.1177/10567895241275365","url":null,"abstract":"The mechanical behavior under static and fatigue loading induced by mechanical forces is examined in this article through the utilization of a non-destructive methodology. However, it is worth noting that the dynamics of elastic waves become notably more intricate when dealing with composite materials. In order to provide a comprehensive description of the green flax/epoxy system, a crucial component of this study involves the computation of guided wave dispersion curves within the test samples. By evaluating the longitudinal and shear modulus under varying stress conditions, the propagation of high-frequency ultrasonic waves, which serves as a dynamic mechanical deformation, can be leveraged to facilitate the comparison of both mechanical and ultrasonic data. The significant changes occurring during the aging process are closely associated with variations in velocity throughout the loading period. The wavelet transformation of all acquired ultrasonic echoes yields the experimental transfer function, thereby enhancing our understanding of the subject matter.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":"7 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142101002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}