International Journal of Damage Mechanics最新文献

筛选
英文 中文
A damage-based analytical model to evaluate seepage pressure effect on rock macro mechanical behaviors from the perspective of micro-fracture 基于损伤的分析模型,从微裂缝角度评估渗流压力对岩石宏观力学行为的影响
IF 4.2 2区 工程技术
International Journal of Damage Mechanics Pub Date : 2024-10-21 DOI: 10.1177/10567895241292750
Yuezong Yang, Zhushan Shao, Nannan Zhao, Kui Wu
{"title":"A damage-based analytical model to evaluate seepage pressure effect on rock macro mechanical behaviors from the perspective of micro-fracture","authors":"Yuezong Yang, Zhushan Shao, Nannan Zhao, Kui Wu","doi":"10.1177/10567895241292750","DOIUrl":"https://doi.org/10.1177/10567895241292750","url":null,"abstract":"The deterioration of rock material properties induced by seepage pressure is a serious danger to the stability of geotechnical engineering. The formation and propagation of microcracks is the primary cause of rock macro failure. This work proposes an damage-based analytical model to assess the impact of seepage pressure on the macro mechanical behaviors of rocks from the standpoint of micro fracture. A wing crack model serves as the foundation for the analytical model. This model has taken into account the impact of seepage pressure on the initiation and growth of wing cracks. The constitutive relation is constructed based on the equivalency connection of damage defined by strain and wing crack length. A comparison between the analytical results and the reported experimental data confirms the reasonableness of the analytical model. Investigations are conducted on the relationship between the macro mechanical behavior of rocks and micro fracture under various seepage pressures, confining pressures, and microscopic parameters. The findings demonstrate that the cracks growth is initially steady before becoming unstable. The growing process of wing cracks stops when they connect with one another, and friction between the crack surfaces takes over. The initiation and growth of wing cracks may be aided by the seepage pressure. As the wing crack propagates, the seepage pressure effect initially increases, then decreases, and eventually has practically no impact. The influence of seepage pressure on rock macro mechanical behavior is that with seepage pressure increasing, the initiation stress and peak stress decrease, but the residual stress is basically a constant. The rock micro fracture process is significantly influenced by confining pressures and microscopic factors, which in turn affect the macro mechanical behavior. The study’s findings offer a micro fracture foundation for comprehending how seepage pressure affects the macro mechanical behaviors of rocks.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":"86 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142486812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Accumulated crystal plasticity dissipation energy driven continuum damage two-scale model for fretting fatigue initiation life 累积晶体塑性耗散能量驱动的连续损伤双尺度模型,用于计算摩擦疲劳起始寿命
IF 4.2 2区 工程技术
International Journal of Damage Mechanics Pub Date : 2024-10-17 DOI: 10.1177/10567895241292749
Yuan Fang, Xu Yazhou
{"title":"Accumulated crystal plasticity dissipation energy driven continuum damage two-scale model for fretting fatigue initiation life","authors":"Yuan Fang, Xu Yazhou","doi":"10.1177/10567895241292749","DOIUrl":"https://doi.org/10.1177/10567895241292749","url":null,"abstract":"Fretting fatigue often occurs in the interfaces between components, subjected to complex multi-axial load states and high stress gradients at the contact edge region. For the prediction of fretting fatigue crack initiation and in-depth understanding of the crack initiation mechanism, it is essential to investigate the damage mechanisms across various scales and explore the underlying scale coupling mechanisms. By introducing a power-law based scale coupling relationship, a two-scale model of fretting fatigue crack initiation life is proposed by combining macroscopic continuum damage mechanics (CDM) with microscopic crystal plastic finite element method (CPFEM). The simulation results indicate that the predicted fretting fatigue initiation life shows better accuracy than the result predicted by single-scale CDM model. In case of low stress level the rate of accumulated dissipation energy can be clearly divided into two stages with turning points, whereas it exhibits a relatively uniform damage process under high stress level. Moreover, the proposed two-scale model partly provides physical explanation for fretting fatigue crack initiation based on the information from the microscale.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":"25 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142448782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental study on the mechanical properties of red sandstone with fractures under different loading rates 不同加载速率下断裂红砂岩力学性能的实验研究
IF 4.2 2区 工程技术
International Journal of Damage Mechanics Pub Date : 2024-09-30 DOI: 10.1177/10567895241277657
Hui Wang, Zhichao Xu, Hongyuan Huai, Yunteng Yin, Jiacong Zeng, Zhihao Du, Hang Zhou
{"title":"Experimental study on the mechanical properties of red sandstone with fractures under different loading rates","authors":"Hui Wang, Zhichao Xu, Hongyuan Huai, Yunteng Yin, Jiacong Zeng, Zhihao Du, Hang Zhou","doi":"10.1177/10567895241277657","DOIUrl":"https://doi.org/10.1177/10567895241277657","url":null,"abstract":"In order to study the effects of crack inclination angle and loading rate on rock mechanical properties, creep characteristics, and failure characteristics. Taking homogeneous red sandstone with different fracture angles as the research object, uniaxial compression tests and uniaxial compression creep tests were conducted at different loading rates. The results showed that under the same fracture angle, the loading rate was positively correlated with the peak strength, elastic modulus, instantaneous strain, creep strain, and steady-state creep rate of the sample, while negatively correlated with the peak strain. At the same loading rate, the mechanical properties and creep properties of the sample were controlled by the crack inclination angle α. With the increase of α, the peak strength, peak strain, instantaneous strain, creep strain and steady-state creep rate decreased first and then increased, and the elastic modulus increased. On the basis of rock creep testing, it is also important to establish a creep model that conforms to the actual test situation for studying rock creep characteristics. However, many models currently used cannot accurately describe the three stages of rock creep, especially the accelerated creep stage. Therefore, based on Burgers elements, this paper introduces plastic damage bodies based on damage rates and software components based on fractional calculus, A new creep model was obtained and its rationality was verified through experimental results. The results showed that the fit between the model and experimental data was above 0.97, indicating that the model can better describe the three stages of rock creep, especially reflecting the non-linear characteristics of the accelerated creep stage.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":"121 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142360550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental analysis of extrusion-based additive manufacturing process of bio-composite NiTi alloy 基于挤压技术的生物复合镍钛合金增材制造工艺实验分析
IF 4.2 2区 工程技术
International Journal of Damage Mechanics Pub Date : 2024-09-27 DOI: 10.1177/10567895241282229
Abel Cherouat, Thierry Barriere, Hong Wang
{"title":"Experimental analysis of extrusion-based additive manufacturing process of bio-composite NiTi alloy","authors":"Abel Cherouat, Thierry Barriere, Hong Wang","doi":"10.1177/10567895241282229","DOIUrl":"https://doi.org/10.1177/10567895241282229","url":null,"abstract":"In this study, a comprehensive investigation was conducted to explore the material extrusion process of NiTi shape-memory alloy-based bio-composite polymeric matrix. Polylactic acid PLA+ Stearic Acid polymeric matrix are performed in order to develop an environmentally friendly process for manufacturing feedstocks with [Formula: see text] nickel-titanium powders for employed in the 3D printing process. The additive manufacturing process based on the extrusion of materials will be studied at all stages (feedstock manufacturing with nickel-titanium powders, 3D printing of bio-composite green part, thermal debinding, and densification by solid-state diffusion) using experimental approaches, analytical approaches to predict printability index and thermo-physical analyses for the formulation of NiTi and biocomposite binders. Printing parameters were optimized by analysing the microstructure, rheological, mechanical properties of feedstock and 3D printed parts. Static mechanical tests will be performed in association with numerical modelling to study the evolution of damage for fully densified SMA specimens in order to describe the ductile failure of 3D printed specimens. Micromechanical phenomenological constitutive models are used in Finite Element software and which can account for the damage localization, initiation and damage growth based on continuum damage mechanics. The results of this study can be used to optimize the extrusion process parameters for different materials and can be helpful for researchers and industrialists to further explore and develop sustainable and eco-friendly materials.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":"56 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142328701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Damage investigation of hybrid flax-glass/epoxy composites subjected to impact fatigue under water ageing 亚麻-玻璃-环氧混合复合材料在水老化条件下的冲击疲劳损伤研究
IF 4.2 2区 工程技术
International Journal of Damage Mechanics Pub Date : 2024-09-24 DOI: 10.1177/10567895241279842
A Goumghar, K Azouaoui, M Assarar, W Zouari, S Mouhoubi, R Ayad, A El Mahi
{"title":"Damage investigation of hybrid flax-glass/epoxy composites subjected to impact fatigue under water ageing","authors":"A Goumghar, K Azouaoui, M Assarar, W Zouari, S Mouhoubi, R Ayad, A El Mahi","doi":"10.1177/10567895241279842","DOIUrl":"https://doi.org/10.1177/10567895241279842","url":null,"abstract":"The aim of this study is to investigate the fatigue behaviour of hybrid flax-glass/epoxy composites under repeated impact loading subsequent to water ageing. Different plates of these composite materials were fabricated using the vacuum infusion technique. Five stacking sequences were considered: [F<jats:sub>8</jats:sub>], [G/F<jats:sub>3</jats:sub>]<jats:sub>S</jats:sub>, [G<jats:sub>2</jats:sub>/F<jats:sub>2</jats:sub>]<jats:sub>S</jats:sub>, [G<jats:sub>3</jats:sub>/F]<jats:sub>S</jats:sub>, and [G<jats:sub>8</jats:sub>], where F and G stand for flax/epoxy and glass/epoxy plies, respectively. Water ageing was conducted by immersing the composite specimens in tap water at room temperature for various durations, and until saturation was reached. Fatigue impact tests were carried out using three impact energies: 3, 4, and 5 J. An advanced high-resolution camera was used to monitor the evolution of damage mechanisms occurring on the non-impacted surfaces, while a laser thermometer was considered to track the temperature variations within each composite specimen. The obtained results show that flax-glass hybridization reduces the mass of absorbed water in flax/epoxy composite by up to 70%. Furthermore, there is a more pronounced decrease in longitudinal modulus and maximum stress in aged composites, with reductions of up to 70% compared to unaged ones. Additionally, visible damage occurs even at low energy levels, manifesting from the initial impacts in both aged and unaged composite laminates. Moreover, a correlation between the number of impacts to failure and the cumulative energy is revealed. Ultimately, water aging reduces the strength of the studied composite laminates and their resistance to impact fatigue. Furthermore, the hybrid laminates with high proportion of flax layers are particularly susceptible to water ageing effects.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":"2 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142317537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review of multiaxial low-cycle fatigue criteria for life prediction of metals 金属寿命预测多轴低循环疲劳标准综述
IF 4.2 2区 工程技术
International Journal of Damage Mechanics Pub Date : 2024-09-24 DOI: 10.1177/10567895241280788
Lorenzo Pagliari, Franco Concli
{"title":"A review of multiaxial low-cycle fatigue criteria for life prediction of metals","authors":"Lorenzo Pagliari, Franco Concli","doi":"10.1177/10567895241280788","DOIUrl":"https://doi.org/10.1177/10567895241280788","url":null,"abstract":"Most of real-world structural components that undergo cyclic loading feature multiaxial fatigue. When the cyclic loading involves also significant plastic deformation, multiaxial low-cycle fatigue takes place. Applications where multiaxial low-cycle fatigue can be observed very often involve metal components. To predict their lives multiple criteria and models have been proposed, but their development has not followed a regular path. Multiple reviews are available in literature. However, many of them are outdated, they often employ different classification methods to categorize available criteria, many focus on specific families of criteria, and others do not include sufficient theoretical background. Moreover, none of the available reviews is based on a systematic literature search method. As a result, approaching the topic can result arduous and chaotic, especially for first timers. This work aims at providing a clear, comprehensive, and definitive review of available criteria for multiaxial low-cycle fatigue. First, the basic theoretical background is explained. Secondly, a systematic approach is described and employed to identify all major currently available criteria. Then, they are classified and commentary about different classification styles that can be found in literature is added. Eventually they are described, together with their latest proposed variations. In this way this review can be employed as a guiding reference, especially for engineers approaching the topic for the first time.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":"216 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142317545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Damage and fracture studies of continuous flax fiber-reinforced composites 3D printed by in-nozzle impregnation additive manufacturing 通过喷嘴内浸渍增材制造技术 3D 打印的连续亚麻纤维增强复合材料的损伤和断裂研究
IF 4.2 2区 工程技术
International Journal of Damage Mechanics Pub Date : 2024-09-18 DOI: 10.1177/10567895241279845
Xikun Wu, Geoffrey Ginoux, Joseph Paux, Samir Allaoui
{"title":"Damage and fracture studies of continuous flax fiber-reinforced composites 3D printed by in-nozzle impregnation additive manufacturing","authors":"Xikun Wu, Geoffrey Ginoux, Joseph Paux, Samir Allaoui","doi":"10.1177/10567895241279845","DOIUrl":"https://doi.org/10.1177/10567895241279845","url":null,"abstract":"Additive manufacturing (AM) of continuous yarn-reinforced biobased composites presents multi-functional properties and low environmental impact of this technology. Few studies focused on the mechanical damage mechanisms of continuous biobased composites obtained by AM processes, while it is a topic of high interest for the mastery of mechanical behaviors and optimization of the materials for high requirement applications. This study aims to assess the damage and fracture modes of continuous flax yarn-reinforced PLA manufactured by AM, with different yarn orientations. The additively manufactured biobased composites were characterized by tensile test, 3D microscopy and micro-tomography to link the process-structure-properties relationships regarding the damage and fracture modes. The results showed that the 0° manufactured composite had a significant enhancement of tensile properties compared to other configurations. The damage mechanism presented fiber rupture with polymer transverse cracks at 0°, while the 45° and 90°-oriented composites showed premature fiber/matrix interface debonding. This study aims to find the relationship between damage mechanisms, deposition strategy, and anisotropy of the additively manufactured long vegetal fibers-reinforced biobased composite materials. The results bring a new understanding of the anisotropy and defects in printed composite materials regarding their mechanical behaviors during damage.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":"50 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142245630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel statistical damage constitutive model of rock joints considering normal stress and joint roughness 考虑法向应力和节理粗糙度的新型岩石节理统计损伤构成模型
IF 4.2 2区 工程技术
International Journal of Damage Mechanics Pub Date : 2024-09-14 DOI: 10.1177/10567895241277681
Qiuxin Gu, Qiang Zhang, Wanli Dai, Xiaowei Quan, Sizhe Ye, Tao Li
{"title":"A novel statistical damage constitutive model of rock joints considering normal stress and joint roughness","authors":"Qiuxin Gu, Qiang Zhang, Wanli Dai, Xiaowei Quan, Sizhe Ye, Tao Li","doi":"10.1177/10567895241277681","DOIUrl":"https://doi.org/10.1177/10567895241277681","url":null,"abstract":"The shear constitutive model of rock joints is of great significance to the stability analysis in rock engineering, and it is closely related to the normal stress ([Formula: see text]) and joint roughness coefficient ( JRC). However, the existing investigations seldom consider the influences of [Formula: see text] and JRC simultaneously. Therefore, a novel damage constitutive model considering the [Formula: see text] and JRC is developed in this work. In the presented model, it is assumed that the rock materials are composed of damaged and undamaged microunits, and the damage evolution law of the microunits conforms to the Weibull distribution in the shear process. Based on the proposed assumption, the constitutive relationship between shear stress and shear displacement is deduced. The evolutions of the mechanical parameters and damage variable versus [Formula: see text] and JRC are analyzed in detail. The proposed damage model that involves [Formula: see text] and JRC is verified by comparing theoretical values with the laboratory results. The results show that the damage constitutive model is in good agreement with the test results. Additionally, the influences of [Formula: see text] and JRC on the shear stress-displacement curves are studied. This work can provide a valuable theoretical method for analyzing the shear mechanical characteristics and damage evolution laws of rock joints.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":"327 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142233310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effort of damage parameter in assessment of low cycle fatigue 损伤参数在低循环疲劳评估中的作用
IF 4.2 2区 工程技术
International Journal of Damage Mechanics Pub Date : 2024-09-14 DOI: 10.1177/10567895241277951
Mykola Bobyr, Vadim Silberchmidt, Viktor Koval
{"title":"Effort of damage parameter in assessment of low cycle fatigue","authors":"Mykola Bobyr, Vadim Silberchmidt, Viktor Koval","doi":"10.1177/10567895241277951","DOIUrl":"https://doi.org/10.1177/10567895241277951","url":null,"abstract":"A low-cycle fatigue (LCF) analysis is one of the main design stages for highly loaded structural elements used in various applications. For this analysis, it is necessary to determine the values of local stresses and deformations, taking into account both elastic and plastic regions in the zones of stress concentration. This study presents and assesses the engineering methods used for prediction of low-cycle fatigue in structural elements. For zones of stress (strain) concentration, the Neuber-Makhutov method for LCF, taking into account the type of material stress-strain diagrams, is employed. The concept of distributed damage, based on the main ideas of the continuum damage mechanics of Kachanov-Rabotnov, was used. An approach employing the damage parameter for assessment of damage accumulation in LCF in highly loaded areas of structural elements is presented.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":"62 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142233277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of hydrothermal fatigue on mechanical properties and damage mechanisms of hemp-reinforced biocomposites and comparison with glass-reinforced composites 水热疲劳对大麻增强生物复合材料机械性能和损伤机理的影响以及与玻璃纤维增强复合材料的比较
IF 4.2 2区 工程技术
International Journal of Damage Mechanics Pub Date : 2024-09-14 DOI: 10.1177/10567895241280375
Quentin Drouhet, Fabienne Touchard, Laurence Chocinski-Arnault
{"title":"Influence of hydrothermal fatigue on mechanical properties and damage mechanisms of hemp-reinforced biocomposites and comparison with glass-reinforced composites","authors":"Quentin Drouhet, Fabienne Touchard, Laurence Chocinski-Arnault","doi":"10.1177/10567895241280375","DOIUrl":"https://doi.org/10.1177/10567895241280375","url":null,"abstract":"The aim of this work was to evaluate the tensile properties and the damage mechanisms of hemp and glass-reinforced composites when they were subjected to hydrothermal fatigue. Each wet/dry cycle consisted in immersing samples in water at 60°C during 12 days and drying them in an oven at 40°C during 2 days. Three different matrices (Epolam, Greenpoxy and Elium) were studied with two reinforcement orientations (±45° and 0°/90°). Gravimetric measurements were performed during 30 wet/dry cycles to determine the evolution of the parameters of the Fick diffusion model. Repeated progressive tensile loading tests instrumented with an acoustic emission setup were also carried out. Damage was investigated by means of SEM and micro-CT. Results showed that hydrothermal fatigue affects significantly the tensile properties of all the composites studied. Hemp/Greenpoxy appears to better resist to hydrothermal fatigue while the hemp/Elium behavior is more impacted. Moreover, contrary to what might be expected, glass/Epolam samples are not the least sensitive to hydrothermal fatigue.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":"74 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142233299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信