Investigation into the time-dependent mechanical behavior of pre-stressed anchor bolts and fractured rock specimens under synchronized tensile loads

IF 4 2区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Wendong Yang, Chuntian Liu, Yiwe Li, Bingqi Wang, Xiang Zhang
{"title":"Investigation into the time-dependent mechanical behavior of pre-stressed anchor bolts and fractured rock specimens under synchronized tensile loads","authors":"Wendong Yang, Chuntian Liu, Yiwe Li, Bingqi Wang, Xiang Zhang","doi":"10.1177/10567895241303164","DOIUrl":null,"url":null,"abstract":"Pre-stressed anchor bolts serve as an effective means to reinforce fractured rock masses. The long-term efficacy of their anchoring function significantly impacts the safety throughout the entire lifecycle of rock engineering projects. Over time, fractured rock masses undergo creep deformation, which interacts synergistically with the time-dependent changes in the pre-stress of anchor bolts. In this work, we conduct uniaxial tensile tests and tensile creep tests on fractured rock specimens anchored by pre-stressed bolts, analyzing the coordinated deformation between the pre-stressed anchor bolts and the fractured specimens. Firstly, conventional uniaxial tensile tests were conducted on the pre-stressed anchorage specimen. The study found that the tensile strength of the anchored specimens was significantly higher than that of the unanchored specimens. Additionally, the ability of the specimens to withstand tensile stresses and deformation improved as pre-stress increased. Secondly, uniaxial tensile creep tests were conducted on the prestressed anchored specimens. The results indicate that, as the stress level increases, the creep strain continues to increase. The application of prestress can effectively limit the tensile deformation of the specimen and delay its damage time. The greater the pre-stress, the smaller the instantaneous strain and creep strain rate during the graded loading test. Finally, based on the synergistic deformation of pre-stressed anchor bolts and the creeping rock mass, we establish a constitutive model reflecting the creep properties of fractured rock mass and derive a theoretical viscoelastic creep formula for anchored rock mass under uniaxial tension. Comparing the creep model with the test results shows that this model is highly applicable and accurate in verifying the tensile creep deformation of prestressed anchorage specimens.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":"77 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Damage Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/10567895241303164","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Pre-stressed anchor bolts serve as an effective means to reinforce fractured rock masses. The long-term efficacy of their anchoring function significantly impacts the safety throughout the entire lifecycle of rock engineering projects. Over time, fractured rock masses undergo creep deformation, which interacts synergistically with the time-dependent changes in the pre-stress of anchor bolts. In this work, we conduct uniaxial tensile tests and tensile creep tests on fractured rock specimens anchored by pre-stressed bolts, analyzing the coordinated deformation between the pre-stressed anchor bolts and the fractured specimens. Firstly, conventional uniaxial tensile tests were conducted on the pre-stressed anchorage specimen. The study found that the tensile strength of the anchored specimens was significantly higher than that of the unanchored specimens. Additionally, the ability of the specimens to withstand tensile stresses and deformation improved as pre-stress increased. Secondly, uniaxial tensile creep tests were conducted on the prestressed anchored specimens. The results indicate that, as the stress level increases, the creep strain continues to increase. The application of prestress can effectively limit the tensile deformation of the specimen and delay its damage time. The greater the pre-stress, the smaller the instantaneous strain and creep strain rate during the graded loading test. Finally, based on the synergistic deformation of pre-stressed anchor bolts and the creeping rock mass, we establish a constitutive model reflecting the creep properties of fractured rock mass and derive a theoretical viscoelastic creep formula for anchored rock mass under uniaxial tension. Comparing the creep model with the test results shows that this model is highly applicable and accurate in verifying the tensile creep deformation of prestressed anchorage specimens.
同步拉伸荷载作用下预应力锚杆与裂隙岩样力学特性随时间变化的研究
预应力锚杆是加固裂隙岩体的有效手段。其锚固功能的长期有效性直接关系到岩石工程全生命周期的安全。随着时间的推移,裂隙岩体发生蠕变变形,与锚杆预应力随时间的变化协同作用。本研究对预应力锚杆锚固的裂隙岩样进行了单轴拉伸试验和拉伸蠕变试验,分析了预应力锚杆与裂隙岩样的协调变形。首先,对预应力锚固试件进行常规单轴拉伸试验。研究发现,锚固试件的抗拉强度明显高于未锚固试件。此外,随着预应力的增加,试件承受拉伸应力和变形的能力也有所提高。其次,对预应力锚固试件进行单轴拉伸蠕变试验。结果表明,随着应力水平的增加,蠕变应变继续增大。施加预应力可以有效地限制试件的拉伸变形,延缓试件的损伤时间。预应力越大,分级加载试验时瞬时应变和蠕变应变率越小。最后,基于预应力锚杆与蠕变岩体的协同变形,建立了反映裂隙岩体蠕变特性的本构模型,推导了锚固岩体在单轴张拉作用下的粘弹性蠕变理论公式。将蠕变模型与试验结果进行比较,表明该模型对验证预应力锚固试件的拉伸蠕变具有较高的适用性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Damage Mechanics
International Journal of Damage Mechanics 工程技术-材料科学:综合
CiteScore
8.70
自引率
26.20%
发文量
48
审稿时长
5.4 months
期刊介绍: Featuring original, peer-reviewed papers by leading specialists from around the world, the International Journal of Damage Mechanics covers new developments in the science and engineering of fracture and damage mechanics. Devoted to the prompt publication of original papers reporting the results of experimental or theoretical work on any aspect of research in the mechanics of fracture and damage assessment, the journal provides an effective mechanism to disseminate information not only within the research community but also between the reseach laboratory and industrial design department. The journal also promotes and contributes to development of the concept of damage mechanics. This journal is a member of the Committee on Publication Ethics (COPE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信