Tien Vu-Van, Huy Tran, Thanh-Van Le, Hoang-Anh Pham, Nguyen Huynh-Tuong
{"title":"An Adaptive Testcase Recommendation System to Engage Students in Learning: A Practice Study in Fundamental Programming Courses","authors":"Tien Vu-Van, Huy Tran, Thanh-Van Le, Hoang-Anh Pham, Nguyen Huynh-Tuong","doi":"10.14569/ijacsa.2023.01406118","DOIUrl":"https://doi.org/10.14569/ijacsa.2023.01406118","url":null,"abstract":"This paper proposes a testcase recommendation system (TRS) to assist beginner-level learners in introductory programming courses with completing assignments on a learning management system (LMS). These learners often struggle to generate complex testcases and handle numerous code errors, leading to disengaging their attention from the study. The proposed TRS addresses this problem by applying the recommendation system using singular value decomposition (SVD) and the zone of proximal development (ZPD) to provide a small and appropriate set of testcases based on the learner’s ability. We implement this TRS to the university-level Fundamental Programming courses for evaluation. The data analysis has demonstrated that TRS significantly increases student interactions with the system. Keywords—Testcases recommendation system (TRS); learning management system (LMS); zone of proximal development (ZPD); singular value decomposition (SVD)","PeriodicalId":13824,"journal":{"name":"International Journal of Advanced Computer Science and Applications","volume":"1 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81032414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
B. Omarov, Nazgul Abdinurova, Zhamshidbek Abdulkhamidov
{"title":"A Novel Framework for Detecting Network Intrusions Based on Machine Learning Methods","authors":"B. Omarov, Nazgul Abdinurova, Zhamshidbek Abdulkhamidov","doi":"10.14569/ijacsa.2023.0140755","DOIUrl":"https://doi.org/10.14569/ijacsa.2023.0140755","url":null,"abstract":"—In the rapidly evolving landscape of cyber threats, the efficacy of traditional rule-based network intrusion detection systems has become increasingly questionable. This paper introduces a novel framework for identifying network intrusions, leveraging the power of advanced machine learning techniques. The proposed methodology steps away from the rigidity of conventional systems, bringing a flexible, adaptive, and intuitive approach to the forefront of network security. This study employs a diverse blend of machine learning models including but not limited to, Convolutional Neural Networks (CNNs), Support Vector Machines (SVMs), and Random Forests. This research explores an innovative feature extraction and selection technique that enables the model to focus on high-priority potential threats, minimizing noise and improving detection accuracy. The framework's performance has been rigorously evaluated through a series of experiments on benchmark datasets. The results consistently surpass traditional methods, demonstrating a remarkable increase in detection rates and a significant reduction in false positives. Further, the machine learning-based model demonstrated its ability to adapt to new threat landscapes, indicating its suitability in real-world scenarios. By marrying the agility of machine learning with the concreteness of network intrusion detection, this research opens up new avenues for dynamic and resilient cybersecurity. The framework offers an innovative solution that can identify, learn, and adapt to evolving network intrusions, shaping the future of cyber defense strategies.","PeriodicalId":13824,"journal":{"name":"International Journal of Advanced Computer Science and Applications","volume":"4 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84894582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sundas Khan, Samra Urooj Khan, Onyeka J. Nwobodo, K. Cyran
{"title":"Iris Recognition Through Edge Detection Methods: Application in Flight Simulator User Identification","authors":"Sundas Khan, Samra Urooj Khan, Onyeka J. Nwobodo, K. Cyran","doi":"10.14569/ijacsa.2023.0140425","DOIUrl":"https://doi.org/10.14569/ijacsa.2023.0140425","url":null,"abstract":"— To meet the increasing security requirement of authorized users of flight simulators, personal identification is becoming more and more important. Iris recognition stands out as one of the most accurate biometric methods in use today. Iris recognition is done through different edge detection methods. Therefore, it is important to have an understanding of the different edge detection methods that are in use these days. Specifically, the biomedical research shows that irises are as different as fingerprints or the other patterns of the recognition. Furthermore, because the iris is a visible organism, its exterior look can be examined remotely using a machine vision system. The main part of this paper delves into concerns concerning the selection of the best results giving method of the recognition. In this paper, three edge detection methods, namely Canny, Sobel and Prewitt, are applied to the image of eye (iris) and their comparative analysis is discussed. These methods are applied using the Software MATLAB. The datasets used for this purpose are CASIA and MMU. The results indicate that the performance of Canny edge detection method is best as compared to Sobel and Prewitt. Image quality is a key requirement in image-based object recognition. This paper provides the quality evaluation of the images using different metrics like PSNR, SNR, MSE and SSIM. However, SSIM is considered best image quality metric as compared to PSNR, SNR and MSE.","PeriodicalId":13824,"journal":{"name":"International Journal of Advanced Computer Science and Applications","volume":"54 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83613365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Proactive Acquisition using Bot on Discord","authors":"N. Cahyani, D. Pratama, N. H. A. Rahman","doi":"10.14569/ijacsa.2023.0140533","DOIUrl":"https://doi.org/10.14569/ijacsa.2023.0140533","url":null,"abstract":"org","PeriodicalId":13824,"journal":{"name":"International Journal of Advanced Computer Science and Applications","volume":"43 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81828055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimal Scheduling using Advanced Cat Swarm Optimization Algorithm to Improve Performance in Fog Computing","authors":"Xiaoyan Huo, Xue-ming Wang","doi":"10.14569/ijacsa.2023.01407114","DOIUrl":"https://doi.org/10.14569/ijacsa.2023.01407114","url":null,"abstract":"—Fog computing can be considered a decentralized computing approach that essentially extends the capabilities offered by cloud computing to the periphery of the network. In addition, due to its proximity to the user, fog computing proves to be highly efficient in minimizing the volume of data that needs to be transmitted, reducing overall network traffic, and shortening the distance that data must travel. But this technology, like other new technologies, has challenges, and scheduling and optimal allocation of resources is one of the most important of these challenges. Accordingly, this research aims to propose an optimal solution for efficient scheduling within the fog computing environment through the application of the advanced cat swarm optimization algorithm. In this solution, the two main behaviors of cats are implemented in the form of seek and tracking states. Accordingly, processing nodes are periodically examined and categorized based on the number of available resources; servers with highly available resources are prioritized in the scheduling process for efficient scheduling. Subsequently, the congested servers, which may be experiencing various issues, are migrated to alternative servers with ample resources using the virtual machine live migration technique. Ultimately, the effectiveness of the proposed solution is assessed using the iFogSim simulator, demonstrating notable reductions in execution time and energy consumption. So, the proposed solution has led to a 20% reduction in execution time while also improving energy efficiency by more than 15% on average. This optimization represents a trade-off between improving performance and reducing resource consumption.","PeriodicalId":13824,"journal":{"name":"International Journal of Advanced Computer Science and Applications","volume":"17 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85316991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Machine Learning Enabled Hall-Effect IoT-System for Monitoring Building Vibrations","authors":"E. Lattanzi, Paolo Capellacci, Valerio Freschi","doi":"10.14569/ijacsa.2023.0140205","DOIUrl":"https://doi.org/10.14569/ijacsa.2023.0140205","url":null,"abstract":"—Vibration monitoring of civil infrastructures is a fundamental task to assess their structural health, which can be nowadays carried on at reduced costs thanks to new sensing devices and embedded hardware platforms. In this work, we present a system for monitoring vibrations in buildings based on a novel, cheap, Hall-effect vibration sensor that is interfaced with a commercially available embedded hardware platform, in order to support communication toward cloud based services by means of IoT communication protocols. Two deep learning neural networks have been implemented and tested to demonstrate the capability of performing nontrivial prediction tasks directly on board of the embedded platform, an important feature to conceive dynamical policies for deciding whether to perform a recognition task on the final (resource constrained) device, or delegate it to the cloud according to specific energy, latency, accuracy requirements. Experimental evaluation on two use cases, namely the detection of a seismic event and the count of steps made by people transiting in a public building highlight the potential of the adopted solution; for instance, recognition of walking-induced vibrations can be achieved with an accuracy of 96% in real-time within time windows of 500ms. Overall, the results of the empirical investigation show the flexibility of the proposed solution as a promising alternative for the design of vibration monitoring systems in built environments.","PeriodicalId":13824,"journal":{"name":"International Journal of Advanced Computer Science and Applications","volume":"12 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85378288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maher Abuhamdeh, O. Qtaish, Hasan Kanaker, Ahmad Alshanty, Nidal Yousef, A. Alali
{"title":"Leveraging Big Data and AI in Mobile Shopping: A Study in the Context of Jordan","authors":"Maher Abuhamdeh, O. Qtaish, Hasan Kanaker, Ahmad Alshanty, Nidal Yousef, A. Alali","doi":"10.14569/ijacsa.2023.0140725","DOIUrl":"https://doi.org/10.14569/ijacsa.2023.0140725","url":null,"abstract":"—This study investigates the current state of mobile shopping in Jordan and the integration of big data and AI technologies in this context. A mixed-methods approach, combining qualitative and quantitative data collection techniques, utilized to gather comprehensive insights. The survey questionnaire distributed to 105 individuals engaged in mobile shopping in Jordan. The findings highlight the popularity of mobile shopping and the preference for mobile apps as the primary platform. Personalized product recommendations emerged as a crucial factor in enhancing the mobile shopping experience. Privacy concerns regarding data sharing were present among respondents. Trust in AI-powered virtual assistants varied, indicating the potential for leveraging AI technologies. Respondents recognized the potential of big data and AI in improving the mobile shopping experience. The study concludes that businesses can enhance mobile shopping by utilizing AI-powered virtual assistants and prioritizing data security. The findings contribute to understanding mobile shopping dynamics and provide guidance for businesses and policymakers in optimizing mobile shopping experiences and driving economic growth in Jordan's digital economy. Future research and implementation efforts are encouraged to harness the potential of big data and AI in the mobile shopping landscape.","PeriodicalId":13824,"journal":{"name":"International Journal of Advanced Computer Science and Applications","volume":"47 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83134844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An Add-on CNN based Model for the Detection of Tuberculosis using Chest X-ray Images","authors":"Roopa N K, M. S","doi":"10.14569/ijacsa.2023.0140313","DOIUrl":"https://doi.org/10.14569/ijacsa.2023.0140313","url":null,"abstract":"—Machine Learning has been potentially contributing towards smart diagnosis in the medical domain for more than a decade with a target towards achieving higher accuracy in detection and classification. However, from the perspective of medical image processing, the contribution of machine learning towards segmentation is not been much to find in recent times. The proposed study considers a use case of Tuberculosis detection and classification from chest x-rays where a unique machine learning approach of Convolution Neural Network is adopted for segmentation of lung images from CXR. A computational framework is developed that performs segmentation, feature extraction, detection, and classification. The proposed system's study outcome is analyzed with and without segmentation over existing machine learning models to exhibit 99.85% accuracy, which is the highest score to date in contrast to existing approaches found in the literature. The study outcome based on the comparative analysis exhibits the effectiveness of the proposed system.","PeriodicalId":13824,"journal":{"name":"International Journal of Advanced Computer Science and Applications","volume":"24 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83290380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Queueing Model based Dynamic Scalability for Containerized Cloud","authors":"Ankit Srivastava, Narander Kumar","doi":"10.14569/ijacsa.2023.0140150","DOIUrl":"https://doi.org/10.14569/ijacsa.2023.0140150","url":null,"abstract":"—Cloud computing has become a growing technology and has received wide acceptance in the scientific community and large organizations like government and industry. Due to the highly complex nature of VM virtualization, lightweight containers have gained wide popularity, and techniques to provision the resources to these containers have drawn researchers towards themselves. The models or algorithms that provide dynamic scalability which meets the demand of high performance and QoS utilizing the minimum number of resources for the containerized cloud have been lacking in the literature. The dynamic scalability facilitates the cloud services in offering timely, on-demand, and computing resources having the characteristic of dynamic adjustment to the end users. The manuscript has presented a technique which has exploited the queuing model to perform the dynamic scalability and scale the virtual resources of the containers while reducing the finances and meeting up the user’s Service Level Agreement (SLA). The paper aims in improving the usage of virtual resources and satisfy the SLA requirements in terms of response time, drop rate, system throughput, and the number of containers. The work has been simulated using Cloudsim and has been compared with the existing work and the analysis has shown that the proposed work has performed better.","PeriodicalId":13824,"journal":{"name":"International Journal of Advanced Computer Science and Applications","volume":"4 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83386027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bird Detection and Species Classification: Using YOLOv5 and Deep Transfer Learning Models","authors":"Hoang-Tu Vo, Nhon Nguyen Thien, Kheo Chau Mui","doi":"10.14569/ijacsa.2023.01407102","DOIUrl":"https://doi.org/10.14569/ijacsa.2023.01407102","url":null,"abstract":"—Bird detection and species classification are important tasks in ecological research and bird conservation efforts. The study aims to address the challenges of accurately identifying bird species in images, which plays a crucial role in various fields such as environmental monitoring, and wildlife conservation. This article presents a comprehensive study on bird detection and species classification using the YOLOv5 object detection algorithm and deep transfer learning models. The objective is to develop an efficient and accurate system for identifying bird species in images. The YOLOv5 model is utilized for robust bird detection, enabling the localization of birds within images. Deep transfer learning (TL) models, including VGG19, Inception V3, and EfficientNetB3, are employed for species classification, leveraging their pre-trained weights and learned features. The experimental findings show that the proposed approach is effective, with excellent accuracy in both bird detection and tasks for species classification. The study showcases the potential of combining YOLOv5 with deep transfer learning models for comprehensive bird analysis, opening avenues for automated bird monitoring, ecological research, and conservation efforts. Furthermore, the study investigated the effects of optimization algorithms, including SGD, Adam, and Adamax, on the performance of the models. The findings contribute to the advancement of bird recognition systems and provide insights into the performance and suitability of various deep transfer learning architectures for avian image analysis.","PeriodicalId":13824,"journal":{"name":"International Journal of Advanced Computer Science and Applications","volume":"56 7 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83481543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}