{"title":"基于机器学习和自然启发的基因组组装算法研究进展","authors":"Asmae Yassine, M. E. Riffi","doi":"10.14569/ijacsa.2023.0140798","DOIUrl":null,"url":null,"abstract":"—Genome assembly plays a crucial role in the field of bioinformatics, as current sequencing technologies are unable to sequence an entire genome at once where the need for fragmenting into short sequences and reassembling them. The genomes often contain repetitive sequences and duplicated regions, which can lead to ambiguities during assembly. Thus, the process of reconstructing a complete genome from a set of reads necessitates the use of efficient assembly programs. Over time, as genome sequencing technology has advanced, the methods for genome assembly have also evolved, resulting in the utilization of various genome assemblers. Many artificial intelligence techniques such as machine learning and nature-inspired algorithms have been applied in genome assembly in recent years. These technologies have the potential to significantly enhance the accuracy of genome assembly, leading to functionally correct genome reconstructions. This review paper aims to provide an overview of the genome assembly, highlighting the significance of different methods used in machine learning techniques and nature-inspiring algorithms in achieving accurate and efficient genome assembly. By examining the advancements and possibilities brought about by different machine learning and metaheuristics approaches, this review paper offers insights into the future directions of genome assembly.","PeriodicalId":13824,"journal":{"name":"International Journal of Advanced Computer Science and Applications","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Review on Machine-Learning and Nature-Inspired Algorithms for Genome Assembly\",\"authors\":\"Asmae Yassine, M. E. Riffi\",\"doi\":\"10.14569/ijacsa.2023.0140798\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"—Genome assembly plays a crucial role in the field of bioinformatics, as current sequencing technologies are unable to sequence an entire genome at once where the need for fragmenting into short sequences and reassembling them. The genomes often contain repetitive sequences and duplicated regions, which can lead to ambiguities during assembly. Thus, the process of reconstructing a complete genome from a set of reads necessitates the use of efficient assembly programs. Over time, as genome sequencing technology has advanced, the methods for genome assembly have also evolved, resulting in the utilization of various genome assemblers. Many artificial intelligence techniques such as machine learning and nature-inspired algorithms have been applied in genome assembly in recent years. These technologies have the potential to significantly enhance the accuracy of genome assembly, leading to functionally correct genome reconstructions. This review paper aims to provide an overview of the genome assembly, highlighting the significance of different methods used in machine learning techniques and nature-inspiring algorithms in achieving accurate and efficient genome assembly. By examining the advancements and possibilities brought about by different machine learning and metaheuristics approaches, this review paper offers insights into the future directions of genome assembly.\",\"PeriodicalId\":13824,\"journal\":{\"name\":\"International Journal of Advanced Computer Science and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Computer Science and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14569/ijacsa.2023.0140798\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Computer Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14569/ijacsa.2023.0140798","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
A Review on Machine-Learning and Nature-Inspired Algorithms for Genome Assembly
—Genome assembly plays a crucial role in the field of bioinformatics, as current sequencing technologies are unable to sequence an entire genome at once where the need for fragmenting into short sequences and reassembling them. The genomes often contain repetitive sequences and duplicated regions, which can lead to ambiguities during assembly. Thus, the process of reconstructing a complete genome from a set of reads necessitates the use of efficient assembly programs. Over time, as genome sequencing technology has advanced, the methods for genome assembly have also evolved, resulting in the utilization of various genome assemblers. Many artificial intelligence techniques such as machine learning and nature-inspired algorithms have been applied in genome assembly in recent years. These technologies have the potential to significantly enhance the accuracy of genome assembly, leading to functionally correct genome reconstructions. This review paper aims to provide an overview of the genome assembly, highlighting the significance of different methods used in machine learning techniques and nature-inspiring algorithms in achieving accurate and efficient genome assembly. By examining the advancements and possibilities brought about by different machine learning and metaheuristics approaches, this review paper offers insights into the future directions of genome assembly.
期刊介绍:
IJACSA is a scholarly computer science journal representing the best in research. Its mission is to provide an outlet for quality research to be publicised and published to a global audience. The journal aims to publish papers selected through rigorous double-blind peer review to ensure originality, timeliness, relevance, and readability. In sync with the Journal''s vision "to be a respected publication that publishes peer reviewed research articles, as well as review and survey papers contributed by International community of Authors", we have drawn reviewers and editors from Institutions and Universities across the globe. A double blind peer review process is conducted to ensure that we retain high standards. At IJACSA, we stand strong because we know that global challenges make way for new innovations, new ways and new talent. International Journal of Advanced Computer Science and Applications publishes carefully refereed research, review and survey papers which offer a significant contribution to the computer science literature, and which are of interest to a wide audience. Coverage extends to all main-stream branches of computer science and related applications