{"title":"深度学习智能评价方法在书法教学中的应用","authors":"Yu Wang","doi":"10.14569/ijacsa.2023.01406139","DOIUrl":null,"url":null,"abstract":"Scientific and effective teaching quality evaluation (QE) is helpful to improve teaching mode and improve teaching quality. At present, calligraphy teaching (CT) QE methods are few in number and have poor evaluation effect. Aiming at these problems, deep learning (DL) is introduced to realize intelligent evaluation of CT quality. First, based on relevant research, the CTQE indicator system is constructed. Secondly, rough set and the principal component analysis (PCA) are used to reduce the dimension of the CTQE index system and extract four common factors. Then, the corresponding index data is input into the BP neural network (BPNN) model optimized by the improved sparrow search algorithm for fitting. Finally, combining the above contents, the improved sparrow search algorithm (ISSA) BPNN model is built to realize the intelligent evaluation of CT quality. The experimental results show that the loss value of ISSA-BPN model is 0.21, and the fitting degree of CT data is 0.953. The evaluation Accuracy is 95%, Precision is 0.945, Recall is 0.923, F1 is 0.942, and AUC is 0.967. These values are superior to the most advanced teaching QE model available. The SSA-BPNNCTQE model proposed in the study has excellent performance in CTQE. This is of positive significance to the improvement of teaching quality and students' calligraphy level. Keywords—Deep learning; calligraphy teaching; BPNN; intelligent evaluation; sparrow search algorithm","PeriodicalId":13824,"journal":{"name":"International Journal of Advanced Computer Science and Applications","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Application of Intelligent Evaluation Method with Deep Learning in Calligraphy Teaching\",\"authors\":\"Yu Wang\",\"doi\":\"10.14569/ijacsa.2023.01406139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Scientific and effective teaching quality evaluation (QE) is helpful to improve teaching mode and improve teaching quality. At present, calligraphy teaching (CT) QE methods are few in number and have poor evaluation effect. Aiming at these problems, deep learning (DL) is introduced to realize intelligent evaluation of CT quality. First, based on relevant research, the CTQE indicator system is constructed. Secondly, rough set and the principal component analysis (PCA) are used to reduce the dimension of the CTQE index system and extract four common factors. Then, the corresponding index data is input into the BP neural network (BPNN) model optimized by the improved sparrow search algorithm for fitting. Finally, combining the above contents, the improved sparrow search algorithm (ISSA) BPNN model is built to realize the intelligent evaluation of CT quality. The experimental results show that the loss value of ISSA-BPN model is 0.21, and the fitting degree of CT data is 0.953. The evaluation Accuracy is 95%, Precision is 0.945, Recall is 0.923, F1 is 0.942, and AUC is 0.967. These values are superior to the most advanced teaching QE model available. The SSA-BPNNCTQE model proposed in the study has excellent performance in CTQE. This is of positive significance to the improvement of teaching quality and students' calligraphy level. Keywords—Deep learning; calligraphy teaching; BPNN; intelligent evaluation; sparrow search algorithm\",\"PeriodicalId\":13824,\"journal\":{\"name\":\"International Journal of Advanced Computer Science and Applications\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Computer Science and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14569/ijacsa.2023.01406139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Computer Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14569/ijacsa.2023.01406139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
The Application of Intelligent Evaluation Method with Deep Learning in Calligraphy Teaching
Scientific and effective teaching quality evaluation (QE) is helpful to improve teaching mode and improve teaching quality. At present, calligraphy teaching (CT) QE methods are few in number and have poor evaluation effect. Aiming at these problems, deep learning (DL) is introduced to realize intelligent evaluation of CT quality. First, based on relevant research, the CTQE indicator system is constructed. Secondly, rough set and the principal component analysis (PCA) are used to reduce the dimension of the CTQE index system and extract four common factors. Then, the corresponding index data is input into the BP neural network (BPNN) model optimized by the improved sparrow search algorithm for fitting. Finally, combining the above contents, the improved sparrow search algorithm (ISSA) BPNN model is built to realize the intelligent evaluation of CT quality. The experimental results show that the loss value of ISSA-BPN model is 0.21, and the fitting degree of CT data is 0.953. The evaluation Accuracy is 95%, Precision is 0.945, Recall is 0.923, F1 is 0.942, and AUC is 0.967. These values are superior to the most advanced teaching QE model available. The SSA-BPNNCTQE model proposed in the study has excellent performance in CTQE. This is of positive significance to the improvement of teaching quality and students' calligraphy level. Keywords—Deep learning; calligraphy teaching; BPNN; intelligent evaluation; sparrow search algorithm
期刊介绍:
IJACSA is a scholarly computer science journal representing the best in research. Its mission is to provide an outlet for quality research to be publicised and published to a global audience. The journal aims to publish papers selected through rigorous double-blind peer review to ensure originality, timeliness, relevance, and readability. In sync with the Journal''s vision "to be a respected publication that publishes peer reviewed research articles, as well as review and survey papers contributed by International community of Authors", we have drawn reviewers and editors from Institutions and Universities across the globe. A double blind peer review process is conducted to ensure that we retain high standards. At IJACSA, we stand strong because we know that global challenges make way for new innovations, new ways and new talent. International Journal of Advanced Computer Science and Applications publishes carefully refereed research, review and survey papers which offer a significant contribution to the computer science literature, and which are of interest to a wide audience. Coverage extends to all main-stream branches of computer science and related applications