International Journal of Aerospace Engineering最新文献

筛选
英文 中文
Comparative Study and Airspeed Sensitivity Analysis of Full-Wing Solar-Powered UAVs Using Rigid-Body, Multibody, and Rigid-Flexible Combo Models 使用刚体、多体和刚柔结合模型对全机翼太阳能无人机进行比较研究和空速敏感性分析
IF 1.4 4区 工程技术
International Journal of Aerospace Engineering Pub Date : 2024-05-28 DOI: 10.1155/2024/9095713
An Guo, Shanshan Mu, Zhou Zhou, Jiwei Tang
{"title":"Comparative Study and Airspeed Sensitivity Analysis of Full-Wing Solar-Powered UAVs Using Rigid-Body, Multibody, and Rigid-Flexible Combo Models","authors":"An Guo, Shanshan Mu, Zhou Zhou, Jiwei Tang","doi":"10.1155/2024/9095713","DOIUrl":"https://doi.org/10.1155/2024/9095713","url":null,"abstract":"Solar-powered UAVs are characterized by large-scale, lightweight, and low airspeed, and changes in airspeed lead to wing deformation or stalling, which can easily induce serious flight accidents. A single dynamic model cannot accurately describe this feature, and this airspeed sensitivity can only be analyzed by integrating rigid-body, multirigid-body, and rigid-flexible combo models. This paper proposes a dynamic analysis method for a mixture of rigid-body, multirigid-body, and rigid-flexible combo models, considering the applicable airspeed ranges, computational costs, and structural deformation assumptions of the three models and comparing the differences of modes and responses at different airspeeds, and quantitatively analyzes the effects of airspeed on the motion, deformation, and coupling. The results show that appropriate increase of airspeed is beneficial to the stability of large-scale lightweight platforms, but when it is increased to more than two times the cruise speed, the structural deformation is coupled with the flight dynamic modes, leading to the deterioration of the overall dynamic response. Finally, a mixture of the three models at different airspeeds is proposed, which is necessary for future ultralarge-scale solar-powered UAVs.","PeriodicalId":13748,"journal":{"name":"International Journal of Aerospace Engineering","volume":"66 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141170200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced Multi-UAV Path Planning in Complex Environments With Voronoi-Based Obstacle Modelling and Q-Learning 利用基于 Voronoi-Based 的障碍物建模和 Q-Learning 增强复杂环境中的多无人飞行器路径规划
IF 1.4 4区 工程技术
International Journal of Aerospace Engineering Pub Date : 2024-05-27 DOI: 10.1155/2024/5114696
Wenjia Su, Min Gao, Xinbao Gao, Zhaolong Xuan
{"title":"Enhanced Multi-UAV Path Planning in Complex Environments With Voronoi-Based Obstacle Modelling and Q-Learning","authors":"Wenjia Su, Min Gao, Xinbao Gao, Zhaolong Xuan","doi":"10.1155/2024/5114696","DOIUrl":"https://doi.org/10.1155/2024/5114696","url":null,"abstract":"To tackle the challenge of obstacle avoidance path planning for multiple unmanned aerial vehicles (UAVs) in intricate environments, this study introduces a Voronoi graph–based model to represent the obstacle-laden environment and employs a Markov decision process (MDP) for single UAV path planning. The traditional Q-learning algorithm is enhanced by adjusting the initial state of the Q-table and fine-tuning the reward and penalty values, enabling the acquisition of efficient obstacle avoidance paths for individual UAVs in complex settings. Leveraging the improved Q-learning algorithm for single UAVs, the Q-table is iteratively refined for a fleet of UAVs, with dynamic modifications based on the waypoints chosen by each UAV. This approach ensures the generation of collision-free paths for multiple UAVs, as validated by simulation results that showcase the algorithm’s effectiveness in learning from past training data. The proposed method offers a robust framework for practical UAV trajectory generation in complex environments.","PeriodicalId":13748,"journal":{"name":"International Journal of Aerospace Engineering","volume":"29 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141170367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-UAV Cooperative Air Combat Target Assignment Method Based on VNS-IBPSO in Complex Dynamic Environment 复杂动态环境下基于 VNS-IBPSO 的多无人机合作空战目标分配方法
IF 1.4 4区 工程技术
International Journal of Aerospace Engineering Pub Date : 2024-05-24 DOI: 10.1155/2024/9980746
Yiyuan Li, Weiyi Chen, Shukan Liu, Guang Yang, Fan He
{"title":"Multi-UAV Cooperative Air Combat Target Assignment Method Based on VNS-IBPSO in Complex Dynamic Environment","authors":"Yiyuan Li, Weiyi Chen, Shukan Liu, Guang Yang, Fan He","doi":"10.1155/2024/9980746","DOIUrl":"https://doi.org/10.1155/2024/9980746","url":null,"abstract":"This paper investigates the threat assessment method and target assignment algorithm in multi-UAV cooperative air combat decision-making. To address the uncertainty and dynamic changes in multiple threat attributes and attribute information of UAV targets, we propose a UAV target dynamic threat assessment method based on intuitionistic fuzzy multiattribute decision-making. Firstly, we propose a mixed situation information representation method to represent interval-valued fuzzy data appropriately. Secondly, we employ the normal distribution weight assignment method to fuse the multi-time situation information. Then, by incorporating the analytic hierarchy process and entropy method, we determine the normalized threat value of the target considering both objective situation data characteristics and decision-maker preferences. Finally, a simulation example is provided to validate the rationality of our proposed algorithm. For solving the multi-weapon multi-target assignment problem, a target assignment method based on the VNS-IBPSO algorithm is introduced. This method improves upon the limitations of the BPSO algorithm, such as limited local search capability and premature convergence, by combining variable neighborhood search and an improved binary particle swarm optimization algorithm. Simulation results show that the proposed threat assessment method can obtain reasonable threat assessment results under complex dynamic environments. The proposed VNS-IBPSO algorithm can solve the target assignment model quickly and efficiently based on the assessment results, therefore ensuring that the UAV mission planning system makes the correct combat plan.","PeriodicalId":13748,"journal":{"name":"International Journal of Aerospace Engineering","volume":"12 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141147273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Sparse CoSaMP Channel Estimation Algorithm With Adaptive Variable Step Size for an OFDM System 适用于 OFDM 系统的具有自适应可变步长的稀疏 CoSaMP 信道估计算法
IF 1.4 4区 工程技术
International Journal of Aerospace Engineering Pub Date : 2024-05-14 DOI: 10.1155/2024/8897214
Ning Xiaoling, Chen Yangyi, Zhang Linsen
{"title":"A Sparse CoSaMP Channel Estimation Algorithm With Adaptive Variable Step Size for an OFDM System","authors":"Ning Xiaoling, Chen Yangyi, Zhang Linsen","doi":"10.1155/2024/8897214","DOIUrl":"https://doi.org/10.1155/2024/8897214","url":null,"abstract":"Compressive sampling matching pursuit (CoSaMP), as a conventional algorithm requiring system sparsity and sensitive to step size, was improved in this paper by approximating the sparsity with adaptive variable step size. In the proposed algorithm (CoSaMP with variable step size abbreviated as Vss-CoSaMP), the idea of approximating sparsity with adaptive step size was borrowed from the sparsity adaptive matching pursuit (SAMP) algorithm to determine the sparsity for the CoSaMP algorithm. The applicability of the CoSaMP algorithm was therefore expanded considerably. On this basis, a step size reduction was added as the iteration termination condition of an orthogonal frequency division multiplexing (OFDM) system. An adaptive variable step size algorithm was then put forward to address the CoSaMP algorithm’s sensitivity to step size. It could realize the required precision at different initial step sizes. A simulation was carried out to analyze the influence of pilot number and step size in an OFDM system on the algorithm. The algorithms, including SAMP, CoSaMP, and Vss-CoSaMP, were compared with two sparse channels, revealing that the Vss-CoSaMP algorithm overcame the problem of the CoSaMP algorithm, that is, the impossibility to forecast the channel sparsity. With the adaptive step size, the proposed algorithm could reach and achieve better accuracy than the CoSaMP algorithm. Additionally, the proposed algorithm was superior over the SAMP algorithm in terms of reconstruction, mean square error (MSE), and bit error ratio (BER).","PeriodicalId":13748,"journal":{"name":"International Journal of Aerospace Engineering","volume":"37 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140926710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanism and Application of Attitude and Orbit Coupling Dynamics for Spacecraft Proximity Relative Motion 航天器近距离相对运动的姿态和轨道耦合动力学机制与应用
IF 1.4 4区 工程技术
International Journal of Aerospace Engineering Pub Date : 2024-05-06 DOI: 10.1155/2024/6636084
An Hao, Li Jin, Wang Tianzhe, Zang Jie, Zhang Xianliang, Hao Yong
{"title":"Mechanism and Application of Attitude and Orbit Coupling Dynamics for Spacecraft Proximity Relative Motion","authors":"An Hao, Li Jin, Wang Tianzhe, Zang Jie, Zhang Xianliang, Hao Yong","doi":"10.1155/2024/6636084","DOIUrl":"https://doi.org/10.1155/2024/6636084","url":null,"abstract":"This paper analyzes the root causes of attitude-orbit coupling effects of spacecraft proximity relative motion in space precision collaborative tasks from three aspects: mathematical representation, physical definition, and engineering applications. At first, taking mathematical representation as the context, spacecraft proximity relative motion representations such as particle relative dynamic model, extended particle relative dynamic model, and dual-spiral-based relative dynamic model are investigated in detail. On this basis, the mechanism of attitude-orbit coupling effects originating from different mathematical representations is further investigated. Second, spiral theory–based attitude-orbit coupling relative dynamics is developed. The innovation of this work is extending the dual number representation from rigid body to flexible body, which makes it possible to describe the proximity relative motion between two rigid-flexible coupling spacecraft. Third, the application value of attitude-orbit coupling relative dynamic model in precision collaborative mission such as precision formation, rendezvous and docking, space manipulation, and on-orbit assembly is provided. Finally, simulation results verify the engineering significance of the attitude-orbit coupling relative dynamic model.","PeriodicalId":13748,"journal":{"name":"International Journal of Aerospace Engineering","volume":"39 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140884305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Online Energy-Aware Scheduling for Deadline-Constrained Applications in Distributed Heterogeneous Systems 分布式异构系统中截止时间受限应用的在线能量感知调度
IF 1.4 4区 工程技术
International Journal of Aerospace Engineering Pub Date : 2024-05-02 DOI: 10.1155/2024/2122895
Yifan Liu, Chengelie Du, Jinchao Chen, Xiaoyan Du
{"title":"Online Energy-Aware Scheduling for Deadline-Constrained Applications in Distributed Heterogeneous Systems","authors":"Yifan Liu, Chengelie Du, Jinchao Chen, Xiaoyan Du","doi":"10.1155/2024/2122895","DOIUrl":"https://doi.org/10.1155/2024/2122895","url":null,"abstract":"In the current computing environment, the significance of distributed heterogeneous systems has gained prominence. The research on scheduling problems in distributed systems that consider energy consumption has garnered substantial attention due to its potential to enhance system stability, achieve energy savings, and contribute to environmental preservation. However, efficient scheduling in such systems necessitates not only the consideration of energy consumption but also the ability to adapt to the dynamic nature of the system. To tackle these challenges, we propose an online energy-aware scheduling algorithm for deadline-constrained applications in distributed heterogeneous systems, leveraging dynamic voltage and frequency scaling (DVFS) techniques. First, the algorithm models the continuously arriving applications and heterogeneous processors and proposes a novel task-sorting method to prioritize tasks, ensuring that more applications are completed within their respective deadlines. Second, the algorithm controls the selection range of processors based on the task’s subdeadline and assigns the task to the processor with the minimum energy consumption. Through experiments conducted with randomly generated applications, our approach consistently exhibits superior performance when compared to similar scheduling algorithms.","PeriodicalId":13748,"journal":{"name":"International Journal of Aerospace Engineering","volume":"41 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140829581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical Analysis of Free Play-Induced Aeroelastic Phenomena: A Numerical Approach With Adaptive Step Size Control 自由落体运动引发的气动弹性现象的数值分析:采用自适应步长控制的数值方法
IF 1.4 4区 工程技术
International Journal of Aerospace Engineering Pub Date : 2024-04-29 DOI: 10.1155/2024/9915761
Yu Qijing, Zhang Yafen, Wang Yidan
{"title":"Numerical Analysis of Free Play-Induced Aeroelastic Phenomena: A Numerical Approach With Adaptive Step Size Control","authors":"Yu Qijing, Zhang Yafen, Wang Yidan","doi":"10.1155/2024/9915761","DOIUrl":"https://doi.org/10.1155/2024/9915761","url":null,"abstract":"This study presents a detailed numerical analysis of nonlinear aeroelastic behavior in a two degree of freedom (DOF) model, focusing on plunge and pitch motions and employing the continuation method (CM) with an adaptive step size control algorithm. The research incorporates free-play nonlinearity at the plunge hinge, a common structural nonlinearity in aeronautics that can induce detrimental limit cycle oscillations (LCOs) during flight. By examining three scenarios—linear response, unhindered plunge motion, and nonlinear stiffness behavior—the study assesses the effects of free play on flutter and LCO phenomena, including discontinuity-induced bifurcations like grazing bifurcation. Additionally, the study explores parameter variation for nonlinear flutter analysis, revealing the dynamics of grazing bifurcation and its impact on LCO behavior. The research also demonstrates the method’s superior accuracy in flutter speed estimation and mode-switching identification, despite higher computational demands. The findings underscore the diminishing influence of nonlinear free-play behavior on LCO amplitude, providing insights with significant implications for aeroelastic design and aircraft safety.","PeriodicalId":13748,"journal":{"name":"International Journal of Aerospace Engineering","volume":"3 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140809919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multidisciplinary Design Optimization of Reentry-Powered Hypersonic Vehicles Based on Surrogate Model 基于代理模型的再入动力高超音速飞行器多学科优化设计
IF 1.4 4区 工程技术
International Journal of Aerospace Engineering Pub Date : 2024-04-20 DOI: 10.1155/2024/5557153
Shoudong Ma, Yuxin Yang, Yesi Chen, Hua Yang, Weifang Chen
{"title":"Multidisciplinary Design Optimization of Reentry-Powered Hypersonic Vehicles Based on Surrogate Model","authors":"Shoudong Ma, Yuxin Yang, Yesi Chen, Hua Yang, Weifang Chen","doi":"10.1155/2024/5557153","DOIUrl":"https://doi.org/10.1155/2024/5557153","url":null,"abstract":"Two problems exist in the study of the trajectory optimization problem of powered hypersonic gliding vehicles (HGVs) due to insufficient consideration of the overall design constraints as well as the strong couplings among relevant disciplines: (1) the engine and thrust models are not compatible with the existing HGV; (2) configuration parameters of the HGV are not included as design variables during trajectory optimization (i.e., propulsion discipline is decoupled in the process of the HGV configuration design), thus failing to fully explore the effect of power to improve the performance of the HGV. Therefore, the application of multidisciplinary design optimization (MDO) in the overall design of powered HGVs should be investigated. First, a MDO task analysis and a multidisciplinary model analysis are carried out for the powered HGV. Second, the multidisciplinary optimization problem is defined, and the couplings between disciplines of the powered HGV are analyzed so that a six-discipline model is established that is suitable for the overall design process, including the parameterized configuration geometry, aerodynamics, propulsion, mass properties, trajectory, and aerodynamic heat/thermal protection system (TPS). Finally, a surrogate model is used to replace the time-consuming accurate model, and numerical optimization examples verify the effectiveness of the method. The optimization results show that the method has a good convergence speed, which increases the gliding range of the optimized vehicle by 8.37%. In addition, by decoupling the propulsion discipline, the validation shows that the coupled propulsion discipline during the overall design can increase the range of the powered HGV by 3.87% compared to the powered HGV optimized with the decoupled propulsion discipline. The work done in this paper provides a new design idea for the overall design of a powered HGV.","PeriodicalId":13748,"journal":{"name":"International Journal of Aerospace Engineering","volume":"10 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140624130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Grouping Formation and Obstacle Avoidance Control of UAV Swarm Based on Synchronous DMPC 基于同步 DMPC 的无人机群编队和避障控制
IF 1.4 4区 工程技术
International Journal of Aerospace Engineering Pub Date : 2024-04-12 DOI: 10.1155/2024/4934194
Yunfeng He, Xianjun Shi, Jianhua Lu, Chaolun Zhao, Guorong Zhao
{"title":"Grouping Formation and Obstacle Avoidance Control of UAV Swarm Based on Synchronous DMPC","authors":"Yunfeng He, Xianjun Shi, Jianhua Lu, Chaolun Zhao, Guorong Zhao","doi":"10.1155/2024/4934194","DOIUrl":"https://doi.org/10.1155/2024/4934194","url":null,"abstract":"This paper focuses on the grouping formation control problem of unmanned aerial vehicle (UAV) swarms in obstacle environments. A grouping formation and obstacle avoidance control algorithm based on synchronous distributed model predictive control (DMPC) is proposed. First, the UAV swarm is divided into several groups horizontally and into a leader layer and a follower layer vertically. Second, tracking is regarded as the objective, and collision avoidance and obstacle avoidance are considered as constraints. By combining the velocity obstacle method with synchronous DMPC and providing corresponding terminal components, a leader layer control law is designed. The control law can enable the UAV swarm to track the target while avoiding collisions and dynamic obstacles. Then, considering the formation maintenance term, based on different priorities, member-level obstacle avoidance and group-level obstacle avoidance strategies are proposed, and the corresponding follower layer control laws are provided. Furthermore, the stability of the UAV swarm system under the control algorithm is demonstrated based on the Lyapunov theory. Finally, the effectiveness of the designed algorithm and its superiority in obstacle avoidance are verified through simulations.","PeriodicalId":13748,"journal":{"name":"International Journal of Aerospace Engineering","volume":"146 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140561591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
UAV Detect and Avoid from UTM-Dependent Surveillance UTM-依赖性监视的无人机探测与规避
IF 1.4 4区 工程技术
International Journal of Aerospace Engineering Pub Date : 2024-04-09 DOI: 10.1155/2024/7328971
C. E. Lin, P. C. Shao, J. Y. Bai, Y. Y. Lin, H. T. Bui
{"title":"UAV Detect and Avoid from UTM-Dependent Surveillance","authors":"C. E. Lin, P. C. Shao, J. Y. Bai, Y. Y. Lin, H. T. Bui","doi":"10.1155/2024/7328971","DOIUrl":"https://doi.org/10.1155/2024/7328971","url":null,"abstract":"A hierarchical unmanned aircraft system (UAS) traffic management (UTM) system has deployed 45 ground transceiver stations (GTS) for UAS services in Taiwan. This UTM system covers most areas for UAV-dependent surveillance using ADS-B Like technology. UTM Controller can monitor all UAV flights under transparent surveillance in low airspace. Controller-initiated UAV “detect and avoid” (DAA) mechanism assists UAV separation to ensure flight safety on UTM for small multirotor UAVs. From similar concept to traffic alert and collision avoidance system (TCAS) for the manned aircraft system, the UTM software executes DAA functions to generate approach alerts to UTM Controller. Conflict is detected by heading arrow extrapolation from multiple approaching UAVs by their time to conflict (TTC) on icons. Traffic advisory (TA) and resolution advisory (RA) are pronounced on UTM console to controllers. The less priority UAV pilot will receive the controller-pilot communication (CPC) to perform avoidance resolution. In UTM, the surveillance data period is broadcasting at 5~8 seconds on LoRa (long-range wide-area network) chip. Referring to <span><svg height=\"8.95973pt\" style=\"vertical-align:-0.2063904pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.75334 27.378 8.95973\" width=\"27.378pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,7.068,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,19.747,0)\"></path></g></svg><span></span><svg height=\"8.95973pt\" style=\"vertical-align:-0.2063904pt\" version=\"1.1\" viewbox=\"30.960183800000003 -8.75334 12.655 8.95973\" width=\"12.655pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,31.01,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,37.25,0)\"></path></g></svg></span> seconds and <span><svg height=\"8.93363pt\" style=\"vertical-align:-0.1802902pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.75334 28.435 8.93363\" width=\"28.435pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,8.125,0)\"><use xlink:href=\"#g190-66\"></use></g><g transform=\"matrix(.013,0,0,-0.013,20.804,0)\"><use xlink:href=\"#g117-34\"></use></g></svg><span></span><svg height=\"8.93363pt\" style=\"vertical-align:-0.1802902pt\" version=\"1.1\" viewbox=\"32.0171838 -8.75334 12.655 8.93363\" width=\"12.655pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,32.067,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,38.307,0)\"><use xlink:href=\"#g113-53\"></use></g></svg></span> seconds, the signal delay in ADS-B Like system to UTM server is about 0.5 seconds and CPC response is measured about 3~5 seconds. From real flight tests, the RA is enough for the less priority pilot to maneuver UAV for avoidance. From real flight tests","PeriodicalId":13748,"journal":{"name":"International Journal of Aerospace Engineering","volume":"46 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140561587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信