Yiyuan Li, Weiyi Chen, Shukan Liu, Guang Yang, Fan He
{"title":"Multi-UAV Cooperative Air Combat Target Assignment Method Based on VNS-IBPSO in Complex Dynamic Environment","authors":"Yiyuan Li, Weiyi Chen, Shukan Liu, Guang Yang, Fan He","doi":"10.1155/2024/9980746","DOIUrl":null,"url":null,"abstract":"This paper investigates the threat assessment method and target assignment algorithm in multi-UAV cooperative air combat decision-making. To address the uncertainty and dynamic changes in multiple threat attributes and attribute information of UAV targets, we propose a UAV target dynamic threat assessment method based on intuitionistic fuzzy multiattribute decision-making. Firstly, we propose a mixed situation information representation method to represent interval-valued fuzzy data appropriately. Secondly, we employ the normal distribution weight assignment method to fuse the multi-time situation information. Then, by incorporating the analytic hierarchy process and entropy method, we determine the normalized threat value of the target considering both objective situation data characteristics and decision-maker preferences. Finally, a simulation example is provided to validate the rationality of our proposed algorithm. For solving the multi-weapon multi-target assignment problem, a target assignment method based on the VNS-IBPSO algorithm is introduced. This method improves upon the limitations of the BPSO algorithm, such as limited local search capability and premature convergence, by combining variable neighborhood search and an improved binary particle swarm optimization algorithm. Simulation results show that the proposed threat assessment method can obtain reasonable threat assessment results under complex dynamic environments. The proposed VNS-IBPSO algorithm can solve the target assignment model quickly and efficiently based on the assessment results, therefore ensuring that the UAV mission planning system makes the correct combat plan.","PeriodicalId":13748,"journal":{"name":"International Journal of Aerospace Engineering","volume":"12 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Aerospace Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/9980746","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates the threat assessment method and target assignment algorithm in multi-UAV cooperative air combat decision-making. To address the uncertainty and dynamic changes in multiple threat attributes and attribute information of UAV targets, we propose a UAV target dynamic threat assessment method based on intuitionistic fuzzy multiattribute decision-making. Firstly, we propose a mixed situation information representation method to represent interval-valued fuzzy data appropriately. Secondly, we employ the normal distribution weight assignment method to fuse the multi-time situation information. Then, by incorporating the analytic hierarchy process and entropy method, we determine the normalized threat value of the target considering both objective situation data characteristics and decision-maker preferences. Finally, a simulation example is provided to validate the rationality of our proposed algorithm. For solving the multi-weapon multi-target assignment problem, a target assignment method based on the VNS-IBPSO algorithm is introduced. This method improves upon the limitations of the BPSO algorithm, such as limited local search capability and premature convergence, by combining variable neighborhood search and an improved binary particle swarm optimization algorithm. Simulation results show that the proposed threat assessment method can obtain reasonable threat assessment results under complex dynamic environments. The proposed VNS-IBPSO algorithm can solve the target assignment model quickly and efficiently based on the assessment results, therefore ensuring that the UAV mission planning system makes the correct combat plan.
期刊介绍:
International Journal of Aerospace Engineering aims to serve the international aerospace engineering community through dissemination of scientific knowledge on practical engineering and design methodologies pertaining to aircraft and space vehicles.
Original unpublished manuscripts are solicited on all areas of aerospace engineering including but not limited to:
-Mechanics of materials and structures-
Aerodynamics and fluid mechanics-
Dynamics and control-
Aeroacoustics-
Aeroelasticity-
Propulsion and combustion-
Avionics and systems-
Flight simulation and mechanics-
Unmanned air vehicles (UAVs).
Review articles on any of the above topics are also welcome.