Numerical Analysis of Free Play-Induced Aeroelastic Phenomena: A Numerical Approach With Adaptive Step Size Control

IF 1.1 4区 工程技术 Q3 ENGINEERING, AEROSPACE
Yu Qijing, Zhang Yafen, Wang Yidan
{"title":"Numerical Analysis of Free Play-Induced Aeroelastic Phenomena: A Numerical Approach With Adaptive Step Size Control","authors":"Yu Qijing, Zhang Yafen, Wang Yidan","doi":"10.1155/2024/9915761","DOIUrl":null,"url":null,"abstract":"This study presents a detailed numerical analysis of nonlinear aeroelastic behavior in a two degree of freedom (DOF) model, focusing on plunge and pitch motions and employing the continuation method (CM) with an adaptive step size control algorithm. The research incorporates free-play nonlinearity at the plunge hinge, a common structural nonlinearity in aeronautics that can induce detrimental limit cycle oscillations (LCOs) during flight. By examining three scenarios—linear response, unhindered plunge motion, and nonlinear stiffness behavior—the study assesses the effects of free play on flutter and LCO phenomena, including discontinuity-induced bifurcations like grazing bifurcation. Additionally, the study explores parameter variation for nonlinear flutter analysis, revealing the dynamics of grazing bifurcation and its impact on LCO behavior. The research also demonstrates the method’s superior accuracy in flutter speed estimation and mode-switching identification, despite higher computational demands. The findings underscore the diminishing influence of nonlinear free-play behavior on LCO amplitude, providing insights with significant implications for aeroelastic design and aircraft safety.","PeriodicalId":13748,"journal":{"name":"International Journal of Aerospace Engineering","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Aerospace Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/9915761","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a detailed numerical analysis of nonlinear aeroelastic behavior in a two degree of freedom (DOF) model, focusing on plunge and pitch motions and employing the continuation method (CM) with an adaptive step size control algorithm. The research incorporates free-play nonlinearity at the plunge hinge, a common structural nonlinearity in aeronautics that can induce detrimental limit cycle oscillations (LCOs) during flight. By examining three scenarios—linear response, unhindered plunge motion, and nonlinear stiffness behavior—the study assesses the effects of free play on flutter and LCO phenomena, including discontinuity-induced bifurcations like grazing bifurcation. Additionally, the study explores parameter variation for nonlinear flutter analysis, revealing the dynamics of grazing bifurcation and its impact on LCO behavior. The research also demonstrates the method’s superior accuracy in flutter speed estimation and mode-switching identification, despite higher computational demands. The findings underscore the diminishing influence of nonlinear free-play behavior on LCO amplitude, providing insights with significant implications for aeroelastic design and aircraft safety.
自由落体运动引发的气动弹性现象的数值分析:采用自适应步长控制的数值方法
本研究对双自由度(DOF)模型中的非线性气动弹性行为进行了详细的数值分析,重点关注俯仰运动,并采用了带有自适应步长控制算法的延续法(CM)。研究纳入了俯冲铰链处的自由发挥非线性,这是航空领域常见的结构非线性,可在飞行过程中诱发有害的极限周期振荡(LCO)。该研究通过考察线性响应、无阻碍坠落运动和非线性刚度行为三种情况,评估了自由游隙对扑腾和 LCO 现象的影响,包括不连续引起的分叉,如掠过分叉。此外,该研究还探讨了非线性扑动分析的参数变化,揭示了放牧分岔的动态及其对 LCO 行为的影响。研究还证明,尽管计算要求较高,但该方法在扑腾速度估计和模式切换识别方面具有更高的准确性。研究结果强调了非线性自由发挥行为对 LCO 振幅的影响越来越小,为气动弹性设计和飞机安全提供了具有重要意义的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
7.10%
发文量
195
审稿时长
22 weeks
期刊介绍: International Journal of Aerospace Engineering aims to serve the international aerospace engineering community through dissemination of scientific knowledge on practical engineering and design methodologies pertaining to aircraft and space vehicles. Original unpublished manuscripts are solicited on all areas of aerospace engineering including but not limited to: -Mechanics of materials and structures- Aerodynamics and fluid mechanics- Dynamics and control- Aeroacoustics- Aeroelasticity- Propulsion and combustion- Avionics and systems- Flight simulation and mechanics- Unmanned air vehicles (UAVs). Review articles on any of the above topics are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信