International immunology最新文献

筛选
英文 中文
Downregulation of TCF7 and LEF1 is a key determinant of tumor-infiltrating regulatory T-cell function. TCF7 和 LEF1 的下调是决定肿瘤浸润调节性 T 细胞功能的关键因素。
IF 4.4 4区 医学
International immunology Pub Date : 2024-03-09 DOI: 10.1093/intimm/dxad053
Yujiro Kidani, Yohko Kitagawa, Masaki Hagiwara, Atsunari Kawashima, Takayuki Kanazawa, Hisashi Wada, Motohide Uemura, Norio Nonomura, Daisuke Motooka, Shota Nakamura, Naganari Ohkura, Shimon Sakaguchi
{"title":"Downregulation of TCF7 and LEF1 is a key determinant of tumor-infiltrating regulatory T-cell function.","authors":"Yujiro Kidani, Yohko Kitagawa, Masaki Hagiwara, Atsunari Kawashima, Takayuki Kanazawa, Hisashi Wada, Motohide Uemura, Norio Nonomura, Daisuke Motooka, Shota Nakamura, Naganari Ohkura, Shimon Sakaguchi","doi":"10.1093/intimm/dxad053","DOIUrl":"10.1093/intimm/dxad053","url":null,"abstract":"<p><p>Forkhead box P3 (Foxp3)-expressing regulatory T (Treg) cells play essential roles in immune homeostasis but also contribute to establish a favorable environment for tumor growth by suppressing anti-tumor immune responses. It is thus necessary to specifically target tumor-infiltrating Treg cells to minimize effects on immune homeostasis in cancer immunotherapy. However, molecular features that distinguish tumor-infiltrating Treg cells from those in secondary lymphoid organs remain unknown. Here we characterize distinct features of tumor-infiltrating Treg cells by global analyses of the transcriptome and chromatin landscape. They exhibited activated phenotypes with enhanced Foxp3-dependent transcriptional regulation, yet being distinct from activated Treg cells in secondary lymphoid organs. Such differences may be attributed to the extensive clonal expansion of tumor-infiltrating Treg cells. Moreover, we found that TCF7 and LEF1 were specifically downregulated in tumor-infiltrating Treg cells both in mice and humans. These factors and Foxp3 co-occupied Treg suppressive function-related gene loci in secondary lymphoid organ Treg cells, whereas the absence of TCF7 and LEF1 accompanied altered gene expression and chromatin status at these gene loci in tumor-infiltrating Treg cells. Functionally, overexpression of TCF7 and LEF1 in Treg cells inhibited the enhancement of Treg suppressive function upon activation. Our results thus show the downregulation of TCF7 and LEF1 as markers of highly suppressive Treg cells in tumors and suggest that their absence controls the augmentation of Treg suppressive function in tumors. These molecules may be potential targets for novel cancer immunotherapy with minimum effects on immune homeostasis.</p>","PeriodicalId":13743,"journal":{"name":"International immunology","volume":" ","pages":"167-182"},"PeriodicalIF":4.4,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139086748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aberrant monocytopoiesis drives granuloma development in sarcoidosis. 单核细胞生成异常是肉样瘤病肉芽肿发展的驱动力。
IF 4.4 4区 医学
International immunology Pub Date : 2024-03-09 DOI: 10.1093/intimm/dxad054
Ryosuke Hiranuma, Ryota Sato, Kiyoshi Yamaguchi, Satoshi Nakamizo, Kenichi Asano, Takuma Shibata, Ryutaro Fukui, Yoichi Furukawa, Kenji Kabashima, Kensuke Miyake
{"title":"Aberrant monocytopoiesis drives granuloma development in sarcoidosis.","authors":"Ryosuke Hiranuma, Ryota Sato, Kiyoshi Yamaguchi, Satoshi Nakamizo, Kenichi Asano, Takuma Shibata, Ryutaro Fukui, Yoichi Furukawa, Kenji Kabashima, Kensuke Miyake","doi":"10.1093/intimm/dxad054","DOIUrl":"10.1093/intimm/dxad054","url":null,"abstract":"<p><p>In sarcoidosis, granulomas develop in multiple organs including the liver and lungs. Although mechanistic target of rapamycin complex 1 (mTORC1) activation in macrophages drives granuloma development in sarcoidosis by enhancing macrophage proliferation, little is known about the macrophage subsets that proliferate and mature into granuloma macrophages. Here, we show that aberrantly increased monocytopoiesis gives rise to granulomas in a sarcoidosis model, in which Tsc2, a negative regulator of mTORC1, is conditionally deleted in CSF1R-expressing macrophages (Tsc2csf1rΔ mice). In Tsc2csf1rΔ mice, common myeloid progenitors (CMPs), granulocyte-monocyte progenitors (GMPs), common monocyte progenitors / monocyte progenitors (cMoPs / MPs), inducible monocyte progenitors (iMoPs), and Ly6Cint CX3CR1low CD14- immature monocytes (iMOs), but not monocyte-dendritic cell progenitors (MDPs) and common dendritic cell progenitors (CDPs), accumulated and proliferated in the spleen. Consistent with this, monocytes, neutrophils, and neutrophil-like monocytes increased in the spleens of Tsc2csf1rΔ mice, whereas dendritic cells did not. The adoptive transfer of splenic iMOs into wild-type mice gave rise to granulomas in the liver and lungs. In these target organs, iMOs matured into Ly6Chi classical monocytes/macrophages (cMOs). Giant macrophages (gMAs) also accumulated in the liver and lungs, which were similar to granuloma macrophages in expression of cell surface markers such as MerTK and SLAMF7. Furthermore, the gMA-specific genes were expressed in human macrophages from sarcoidosis skin lesions. These results suggest that mTORC1 drives granuloma development by promoting the proliferation of monocyte/neutrophil progenitors and iMOs predominantly in the spleen, and that proliferating iMOs mature into cMOs and then gMAs to give rise to granuloma after migration into the liver and lungs in sarcoidosis.</p>","PeriodicalId":13743,"journal":{"name":"International immunology","volume":" ","pages":"183-196"},"PeriodicalIF":4.4,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10935646/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139039928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regulation of innate immune and inflammatory responses by supersulfides. 超硫化物对先天性免疫和炎症反应的调节。
IF 4.4 4区 医学
International immunology Pub Date : 2024-03-09 DOI: 10.1093/intimm/dxad057
Hiroyasu Tsutsuki, Tianli Zhang, Takaaki Akaike, Tomohiro Sawa
{"title":"Regulation of innate immune and inflammatory responses by supersulfides.","authors":"Hiroyasu Tsutsuki, Tianli Zhang, Takaaki Akaike, Tomohiro Sawa","doi":"10.1093/intimm/dxad057","DOIUrl":"10.1093/intimm/dxad057","url":null,"abstract":"<p><p>Innate immunity plays an important role in host defense against microbial infections. It also participates in activation of acquired immunity through cytokine production and antigen presentation. Pattern recognition receptors such as Toll-like receptors and nucleotide oligomerization domain-like receptors sense invading pathogens and associated tissue injury, after which inflammatory mediators such as pro-inflammatory cytokines and nitric oxide are induced. Supersulfides are molecular species possessing catenated sulfur atoms such as persulfide and polysulfide moieties. They have recently been recognized as important regulators in cellular redox homeostasis by acting as potent antioxidants and nucleophiles. In addition, recent studies suggested that supersulfides are critically involved in the regulation of innate immune and inflammatory responses. In this review, we summarize current knowledge of the chemistry and biology of supersulfides, with particular attention to their roles in regulation of innate immune, and inflammatory responses. Studies with animal models of infection and inflammation demonstrated the potent anti-inflammatory functions of supersulfides such as blocking pro-inflammatory signaling cascades, reducing oxidative stresses, and inhibiting replication of microbial pathogens including severe acute respiratory syndrome coronavirus 2. Precise understanding of how supersulfides regulate innate immune responses is the necessary requirement for developing supersulfide-based diagnostic as well as therapeutic strategies against inflammatory disorders.</p>","PeriodicalId":13743,"journal":{"name":"International immunology","volume":" ","pages":"143-154"},"PeriodicalIF":4.4,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139106066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ACC1-mediated fatty acid biosynthesis intrinsically controls thymic iNKT cell development. acc1介导的脂肪酸生物合成内在地控制胸腺iNKT细胞的发育。
IF 4.8 4区 医学
International immunology Pub Date : 2024-02-21 DOI: 10.1093/intimm/dxad049
Toshio Kanno, Keisuke Miyako, Takeru Endo, Satoru Yokoyama, Hikari K Asou, Kazuko Yamada, Osamu Ohara, Toshinori Nakayama, Motoko Y Kimura, Yusuke Endo
{"title":"ACC1-mediated fatty acid biosynthesis intrinsically controls thymic iNKT cell development.","authors":"Toshio Kanno, Keisuke Miyako, Takeru Endo, Satoru Yokoyama, Hikari K Asou, Kazuko Yamada, Osamu Ohara, Toshinori Nakayama, Motoko Y Kimura, Yusuke Endo","doi":"10.1093/intimm/dxad049","DOIUrl":"10.1093/intimm/dxad049","url":null,"abstract":"<p><p>To meet the energetic requirements associated with activation, proliferation, and survival, T cells switch their metabolic signatures from energetically quiescent to activated. However, little is known about the role of metabolic pathway controlling the development of invariant natural killer T (iNKT) cells. In the present study, we found that acetyl-CoA carboxylase 1 (ACC1), a rate-limiting enzyme for the fatty acid biosynthesis pathway, plays an essential role in the development of iNKT cells in the thymus. Mice lacking T-cell specific ACC1 showed a reduced number of iNKT cells with an increased proportion of iNKT cells at immature stages 0 and 1. Furthermore, mixed bone marrow (BM) chimera experiments revealed that T-cell intrinsic ACC1 expression was selectively important for the development of thymic iNKT cells, especially for the differentiation of the NKT1 cell subset. Our single-cell RNA-sequencing (scRNA-seq) data and functional analysis demonstrated that ACC1 is responsible for survival of developing iNKT cells. Thus, these findings highlighted a novel role of ACC1 in controlling thymic iNKT cell development mediated by the control of cell survival.</p>","PeriodicalId":13743,"journal":{"name":"International immunology","volume":" ","pages":"129-139"},"PeriodicalIF":4.8,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138470198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The nuclear receptor Nurr1 is preferentially expressed in human pro-inflammatory macrophages and limits their inflammatory profile. 核受体 Nurr1 优先在人类促炎巨噬细胞中表达,并限制其炎性特征。
IF 4.4 4区 医学
International immunology Pub Date : 2024-02-21 DOI: 10.1093/intimm/dxad048
Miguel A Solís-Barbosa, Eduardo Santana, José R Muñoz-Torres, Norma C Segovia-Gamboa, Eduardo Patiño-Martínez, Marco A Meraz-Ríos, Rafael Samaniego, Paloma Sánchez-Mateos, Carmen Sánchez-Torres
{"title":"The nuclear receptor Nurr1 is preferentially expressed in human pro-inflammatory macrophages and limits their inflammatory profile.","authors":"Miguel A Solís-Barbosa, Eduardo Santana, José R Muñoz-Torres, Norma C Segovia-Gamboa, Eduardo Patiño-Martínez, Marco A Meraz-Ríos, Rafael Samaniego, Paloma Sánchez-Mateos, Carmen Sánchez-Torres","doi":"10.1093/intimm/dxad048","DOIUrl":"10.1093/intimm/dxad048","url":null,"abstract":"<p><p>Nurr1 is a member of the orphan nuclear receptor family NR4A (nuclear receptor subfamily 4 group A) that modulates inflammation in several cell lineages, both positively and negatively. Macrophages are key regulators of inflammatory responses, yet information about the role of Nurr1 in human macrophages is scarce. Here we examined Nurr1 expression and activity in steady state and activated human macrophages. Pro- and anti-inflammatory macrophages were generated in vitro by culture of blood monocytes with granulocyte/macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF), respectively. Nurr1 expression was predominant in macrophages with the pro-inflammatory phenotype. Nurr1 activation with the agonists 1,1-bis(3'-indolyl)-1-(p-chlorophenyl) methane (C-DIM12) or isoxazolo-pyridinone 7e (IP7e) did not globally modify the polarization status of pro-inflammatory macrophages, but they decreased their production of TNF, IL-1β, IL-6, IL-8, IL-12 p40, CCL2, IFN-β, and reactive oxygen species, with variable potencies. Conversely, Nurr1 deficient macrophages increased the expression of transcripts encoding inflammatory mediators, particularly that of IL6, IFNB1, and CCL2. Mechanistically, endogenous Nurr1 interacted with NF-κB p65 in basal conditions and upon lipopolysaccharide (LPS)-mediated activation. C-DIM12 stabilized those complexes in cells exposed to LPS and concurrently decreased NF-κB transcriptional activity and p65 nuclear translocation. Expression of high levels of Nurr1 was associated with a subset of dermal macrophages that display enhanced levels of TNF and lower expression of the anti-inflammatory marker CD163L1 in skin lesions from patients with bullous pemphigoid (BP), a chronic inflammatory autoimmune blistering disorder. These results suggest that Nurr1 expression is linked with the pro-inflammatory phenotype of human macrophages, both in vivo and in vitro, where it may constitute a brake to attenuate the synthesis of inflammatory mediators.</p>","PeriodicalId":13743,"journal":{"name":"International immunology","volume":" ","pages":"111-128"},"PeriodicalIF":4.4,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138794305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
T-cell help in the germinal center: homing in on the role of IL-21. 生殖中心的 T 细胞帮助:IL-21 的作用。
IF 4.4 4区 医学
International immunology Pub Date : 2024-02-21 DOI: 10.1093/intimm/dxad056
Lina Petersone, Lucy S K Walker
{"title":"T-cell help in the germinal center: homing in on the role of IL-21.","authors":"Lina Petersone, Lucy S K Walker","doi":"10.1093/intimm/dxad056","DOIUrl":"10.1093/intimm/dxad056","url":null,"abstract":"<p><p>Interleukin 21 (IL-21) is a pleiotropic cytokine that is overproduced in multiple autoimmune settings. Provision of IL-21 from follicular helper T cells is an important component of T-cell help within germinal centers (GC), and the last few years have seen a resurgence of interest in IL-21 biology in the context of the GC environment. While it has been more than a decade since T cell-derived IL-21 was found to upregulate B-cell expression of the GC master transcription factor B-cell lymphoma 6 (Bcl-6) and to promote GC expansion, several recent studies have collectively delivered significant new insights into how this cytokine shapes GC B-cell selection, proliferation, and fate choice. It is now clear that IL-21 plays an important role in GC zonal polarization by contributing to light zone GC B-cell positive selection for dark zone entry as well as by promoting cyclin D3-dependent dark zone inertial cycling. While it has been established that IL-21 can contribute to the modulation of GC output by aiding the generation of antibody-secreting cells (ASC), recent studies have now revealed how IL-21 signal strength shapes the fate choice between GC cycle re-entry and ASC differentiation in vivo. Both provision of IL-21 and sensitivity to this cytokine are finely tuned within the GC environment, and dysregulation of this pathway in autoimmune settings could alter the threshold for germinal center B-cell selection and differentiation, potentially promoting autoreactive B-cell responses.</p>","PeriodicalId":13743,"journal":{"name":"International immunology","volume":" ","pages":"89-98"},"PeriodicalIF":4.4,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10880887/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139073973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
FLT3 signaling augments macrophage production from human pluripotent stem cells. FLT3信号增强了人类多能干细胞产生巨噬细胞的能力。
IF 4.4 4区 医学
International immunology Pub Date : 2024-02-21 DOI: 10.1093/intimm/dxad047
Kenji Kitajima, Minako Shingai, Hikaru Ando, Takahiko Hara
{"title":"FLT3 signaling augments macrophage production from human pluripotent stem cells.","authors":"Kenji Kitajima, Minako Shingai, Hikaru Ando, Takahiko Hara","doi":"10.1093/intimm/dxad047","DOIUrl":"10.1093/intimm/dxad047","url":null,"abstract":"<p><p>Recent advances in cell engineering technologies enable immune cells to be utilized for adoptive cell transfer (ACT) immunotherapy against cancers. Macrophages have the potential to directly and indirectly exterminate cancers and are therefore an attractive option for therapies. To develop new ACT therapies using macrophages, a great number of macrophages are required. Human induced pluripotent stem cells (iPSCs) are expected to be a source of macrophages; therefore, a system to efficiently produce macrophages from human iPSCs is needed. Here, we demonstrated that human iPSCs were robustly differentiated into macrophages by enforced FMS-like tyrosine kinase-3 (FLT3) signaling via the introduction of exogenous FLT3 into iPSCs and the addition of its ligand FLT3L to the macrophage induction culture. These iPSC-derived macrophages were identical to those obtained by standard differentiation induction methods. Thus, our novel system enables the preparation of scalable macrophages from human iPSCs. We believe that this system will be useful to develop a novel ACT therapy using macrophages.</p>","PeriodicalId":13743,"journal":{"name":"International immunology","volume":" ","pages":"99-110"},"PeriodicalIF":4.4,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138794304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Near-infrared photoimmunotherapy and anti-cancer immunity. 近红外光免疫疗法和抗癌免疫。
IF 4.4 4区 医学
International immunology Pub Date : 2024-02-14 DOI: 10.1093/intimm/dxad042
Kohei Nakajima, Mikako Ogawa
{"title":"Near-infrared photoimmunotherapy and anti-cancer immunity.","authors":"Kohei Nakajima, Mikako Ogawa","doi":"10.1093/intimm/dxad042","DOIUrl":"10.1093/intimm/dxad042","url":null,"abstract":"<p><p>The activation of the anti-cancer immune system is an important strategy to control cancer. A new form of cancer phototherapy, near-infrared photoimmunotherapy (NIR-PIT), was approved for clinical use in 2020 and uses IRDye® 700DX (IR700)-conjugated antibodies and NIR light. After irradiation with NIR light, the antibody-IR700 conjugate forms water-insoluble aggregations on the plasma membrane of target cells. This aggregation causes lethal damage to the plasma membrane, and effectively leads to immunogenic cell death (ICD). Subsequently, ICD activates anti-cancer immune cells such as dendritic cells and cytotoxic T cells. Combination therapy with immune-checkpoint blockade has synergistically improved the anti-cancer effects of NIR-PIT. Additionally, NIR-PIT can eliminate immunosuppressive immune cells in light-irradiated tumors by using specific antibodies against regulatory T cells and myeloid-derived suppressor cells. In addition to cancer-cell-targeted NIR-PIT, such immune-cell-targeted NIR-PIT has shown promising results by activating the anti-cancer immune system. Furthermore, NIR-PIT can be used to manipulate the tumor microenvironment by eliminating only targeted cells in the tumor, and thus it also can be used to gain insight into immunity in basic research.</p>","PeriodicalId":13743,"journal":{"name":"International immunology","volume":" ","pages":"57-64"},"PeriodicalIF":4.4,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41235050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Trends in cell medicine: from autologous cells to allogeneic universal-use cells for adoptive T-cell therapies. 细胞医学的发展趋势:从自体细胞到用于收养性 T 细胞疗法的异体通用细胞。
IF 4.4 4区 医学
International immunology Pub Date : 2024-02-14 DOI: 10.1093/intimm/dxad051
Hiroshi Kawamoto, Kyoko Masuda
{"title":"Trends in cell medicine: from autologous cells to allogeneic universal-use cells for adoptive T-cell therapies.","authors":"Hiroshi Kawamoto, Kyoko Masuda","doi":"10.1093/intimm/dxad051","DOIUrl":"10.1093/intimm/dxad051","url":null,"abstract":"<p><p>In currently ongoing adoptive T-cell therapies, T cells collected from patients are given back to them after ex vivo activation and expansion. In some cases, T cells are transduced with chimeric antigen receptor (CAR) or T-cell receptor (TCR) genes during the ex vivo culture period in order to endow T cells with the desired antigen specificity. Although such strategies are effective in some types of cancer, there remain issues to be solved: (i) the limited number of cells, (ii) it is time-consuming, (iii) it is costly, and (iv) the quality can be unstable. Points (ii) and (iv) can be solved by preparing allogeneic T cells and cryopreserving them in advance and methods are being developed using healthy donor-derived T cells or pluripotent stem cells as materials. Whereas it is difficult to solve (i) and (iii) in the former case, all the issues can be cleared in the latter case. However, in either case, a new problem arises: rejection by the patient's immune system. Deletion of human leukocyte antigen (HLA) avoids rejection by recipient T cells, but causes rejection by NK cells, which can recognize loss of HLA class I. Various countermeasures have been developed, but no definitive solution is yet available. Therefore, further research and development are necessary.</p>","PeriodicalId":13743,"journal":{"name":"International immunology","volume":" ","pages":"65-73"},"PeriodicalIF":4.4,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10872703/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139377545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cytokine signaling in chimeric antigen receptor T-cell therapy. 嵌合抗原受体 T 细胞疗法中的细胞因子信号转导。
IF 4.4 4区 医学
International immunology Pub Date : 2024-02-14 DOI: 10.1093/intimm/dxad033
Yuki Kagoya
{"title":"Cytokine signaling in chimeric antigen receptor T-cell therapy.","authors":"Yuki Kagoya","doi":"10.1093/intimm/dxad033","DOIUrl":"10.1093/intimm/dxad033","url":null,"abstract":"<p><p>Adoptive immunotherapy using chimeric antigen-receptor (CAR)-engineered T cells can induce robust antitumor responses against hematologic malignancies. However, its efficacy is not durable in the majority of the patients, warranting further improvement of T-cell functions. Cytokine signaling is one of the key cascades regulating T-cell survival and effector functions. In addition to cytokines that use the common γ chain as a receptor subunit, multiple cytokines regulate T-cell functions directly or indirectly. Modulating cytokine signaling in CAR-T cells by genetic engineering is one promising strategy to augment their therapeutic efficacy. These strategies include ectopic expression of cytokines, cytokine receptors, and synthetic molecules that mimic endogenous cytokine signaling. Alternatively, autocrine IL-2 signaling can be augmented through reprogramming of CAR-T cell properties through transcriptional and epigenetic modification. On the other hand, cytokine production by CAR-T cells triggers systemic inflammatory responses, which mainly manifest as adverse events such as cytokine-release syndrome (CRS) and neurotoxicity. In addition to inhibiting direct inflammatory mediators such as IL-6 and IL-1 released from activated macrophages, suppression of T-cell-derived cytokines associated with the priming of macrophages can be accomplished through genetic modification of CAR-T cells. In this review, I will outline recently developed synthetic biology approaches to exploit cytokine signaling to enhance CAR-T cell functions. I will also discuss therapeutic target molecules to prevent or alleviate CAR-T cell-related toxicities.</p>","PeriodicalId":13743,"journal":{"name":"International immunology","volume":" ","pages":"49-56"},"PeriodicalIF":4.4,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10872714/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10023593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信