Integrative Organismal Biology最新文献

筛选
英文 中文
Jumping Performance and Behavior of the Globular Springtail Dicyrtomina minuta. 球形春尾鱼 Dicyrtomina minuta 的跳跃性能和行为
IF 2.2 4区 生物学
Integrative Organismal Biology Pub Date : 2024-08-29 eCollection Date: 2024-01-01 DOI: 10.1093/iob/obae029
A A Smith, J S Harrison
{"title":"Jumping Performance and Behavior of the Globular Springtail <i>Dicyrtomina minuta</i>.","authors":"A A Smith, J S Harrison","doi":"10.1093/iob/obae029","DOIUrl":"https://doi.org/10.1093/iob/obae029","url":null,"abstract":"<p><p>Springtails are among the most abundant arthropods on earth and they exhibit unique latch-mediated spring-actuated jumping behaviors and anatomical systems. Despite this, springtail jumps have not been well described, especially for those with a globular body plan. Here, we provide a complete description and visualization of jumping in the globular springtail <i>Dicyrtomina minuta</i>. A furca-powered jump results in an average take-off velocity of 1 ms<sup>-1</sup> in 1.7 ms, with a fastest acceleration to liftoff of 1938 ms<sup>-2</sup>. All jumps involve rapid backwards body rotation throughout, rotating on average at 282.2 Hz with a peak rate of 368.7 Hz. Despite body lengths of 1-2 mm, jumping resulted in a backwards trajectory traveling up to 102 mm in horizontal distance and 62 mm in vertical. Escape jumps in response to posterior stimulation did not elicit forward-facing jumps, suggesting that <i>D. minuta</i> is incapable of directing a jump off a flat surface within the 90° heading directly in front of them. Finally, two landing strategies were observed: collophore-anchoring, which allows for an immediate arrest and recovery, and uncontrolled landings where the springtail chaotically tumbles. In comparison to other fast jumping arthropods, linear performance measures globular springtail jumps place them between other systems like fleas and froghoppers. However, in angular body rotation, globular springtails like <i>D. minuta</i> surpass all other animal systems. Given the extraordinary performance measures, unique behavioral responses, and understudied nature of these species, globular springtails present promising opportunities for further description and comparison.</p>","PeriodicalId":13666,"journal":{"name":"Integrative Organismal Biology","volume":"6 1","pages":"obae029"},"PeriodicalIF":2.2,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11360184/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142116923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Embodied Computational Evolution: A Model for Investigating Randomness and the Evolution of Morphological Complexity. 嵌入式计算进化:研究随机性和形态复杂性进化的模型。
IF 2.2 4区 生物学
Integrative Organismal Biology Pub Date : 2024-08-21 eCollection Date: 2024-01-01 DOI: 10.1093/iob/obae032
E Aaron, J H Long
{"title":"Embodied Computational Evolution: A Model for Investigating Randomness and the Evolution of Morphological Complexity.","authors":"E Aaron, J H Long","doi":"10.1093/iob/obae032","DOIUrl":"10.1093/iob/obae032","url":null,"abstract":"<p><p>For an integrated understanding of how evolutionary dynamics operate in parallel on multiple levels, computational models can enable investigations that would be otherwise infeasible or impossible. We present one modeling framework, <i>Embodied Computational Evolution</i> (<i>ECE</i>), and employ it to investigate how two types of randomness-genetic and developmental-drive the evolution of morphological complexity. With these two types of randomness implemented as germline mutation and transcription error, with rates varied in an [Formula: see text] factorial experimental design, we tested two related hypotheses: ( <i><b>H<sub>1</sub></b> </i> ) Randomness in the gene transcription process alters the direct impact of selection on populations; and ( <i><b>H<sub>2</sub></b> </i> ) Selection on locomotor performance targets morphological complexity. The experiment consisted of 121 conditions; in each condition, nine starting phenotypic populations developed from different randomly generated genomic populations of 60 individuals. Each of the resulting 1089 phenotypic populations evolved over 100 generations, with the autonomous, self-propelled individuals under directional selection for enhanced locomotor performance. As encoded by their genome, individuals had heritable morphological traits, including the numbers of segments, sensors, neurons, and connections between sensors and motorized joints that they activated. An individual's morphological complexity was measured by three different metrics derived from counts of the body parts. In support of <i><b>H<sub>1</sub></b> </i> , variations in the rate of randomness in the gene transcription process varied the dynamics of selection. In support of <i><b>H<sub>2</sub></b> </i> , the morphological complexity of populations evolved adaptively.</p>","PeriodicalId":13666,"journal":{"name":"Integrative Organismal Biology","volume":"6 1","pages":"obae032"},"PeriodicalIF":2.2,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11413536/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142286286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Physiological and Biochemical Response of Ribbed Mussels to Rising Temperatures: Benefits of Salt Marsh Cordgrass. 肋贻贝对气温上升的生理和生化反应:盐沼科迪草的益处。
IF 2.2 4区 生物学
Integrative Organismal Biology Pub Date : 2024-08-21 eCollection Date: 2024-01-01 DOI: 10.1093/iob/obae031
A Smith, J Erber, A Watson, C Johnson, W E Gato, S B George
{"title":"The Physiological and Biochemical Response of Ribbed Mussels to Rising Temperatures: Benefits of Salt Marsh Cordgrass.","authors":"A Smith, J Erber, A Watson, C Johnson, W E Gato, S B George","doi":"10.1093/iob/obae031","DOIUrl":"https://doi.org/10.1093/iob/obae031","url":null,"abstract":"<p><p>Salt marsh ecosystems are heavily reliant on ribbed mussel (<i>Geukensia demissa</i>) populations to aid in rapid recovery from droughts. The focus of this study was thus to document the effects of rising temperatures on ribbed mussel populations in a Georgia salt marsh. Seven lab and eight field experiments were used to assess the effects of current air temperatures on mussels at two high marsh (HM) sites with short and sparse cordgrass and one mid marsh (MM) site with tall and dense cordgrass. Field results in 2018 and 2019 indicate that ribbed mussels were experiencing extremely high temperatures for prolonged periods of time at the landlocked high marsh (LHM) site. In 2018, the highest temperature (54°C) and longest high temperature events, HTEs (58 days), that is, consecutive days with temperatures ≥40°C, were recorded at this site. When laboratory temperatures were increased from 20 to 36°C, mean heart rates increased by an average of 19 bpm for mussels from both high and MM sites respectively. When field temperatures rose from 20°C in April to 40°C in September 2019, mean heart rates increased by an average of 10 bpm for HM mussels and by 26.3 bpm for MM mussels. Under identical laboratory and field conditions, mean heart rates for mussels from the LHM site with the highest temperatures, increased by <1 bpm and 3.7 bpm respectively. Evidence of the potential role of shade on mussel aggregates was provided by examining whether mussels from the edge of mussel aggregates with little to no cordgrass for shade were more stressed than those living at the center of mussel aggregates. In the absence of shade, mean body temperatures for mussels at the edge of mussel aggregates were up to 8°C higher than for those living in the center underneath a dense tuft of cordgrass. Despite high body temperatures, mean heart rates and Hsp70 gene expression were lower for mussels living at the edges. This agrees with the strategy that during prolong exposure to high temperatures, mussels may reduce their heart rate to conserve energy and enhance survival. Alternatively, heat-stressed mussels at the edges of aggregates may not have the resources to express high levels of Hsp70. Increase in the frequency, intensity, and duration of HTEs may stress the physiological and biochemical function of mussel populations to the limit, dictate mussel aggregate size, and threaten the functionality of SE salt marshes.</p>","PeriodicalId":13666,"journal":{"name":"Integrative Organismal Biology","volume":"6 1","pages":"obae031"},"PeriodicalIF":2.2,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11398905/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142286288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Variable Craniofacial Shape and Development among Multiple Cave-Adapted Populations of Astyanax mexicanus. 在多个洞穴适应种群中,Astyanax mexicanus 的颅面形状和发育各不相同。
IF 2.2 4区 生物学
Integrative Organismal Biology Pub Date : 2024-08-14 eCollection Date: 2024-01-01 DOI: 10.1093/iob/obae030
N Holtz, R C Albertson
{"title":"Variable Craniofacial Shape and Development among Multiple Cave-Adapted Populations of <i>Astyanax mexicanus</i>.","authors":"N Holtz, R C Albertson","doi":"10.1093/iob/obae030","DOIUrl":"10.1093/iob/obae030","url":null,"abstract":"<p><p><i>Astyanax mexicanus</i> is a freshwater fish species with blind cave morphs and sighted surface morphs. Like other troglodytic species, independently evolved cave-dwelling <i>A. mexicanus</i> populations share several stereotypic phenotypes, including the expansion of certain sensory systems, as well as the loss of eyes and pigmentation. Here, we assess the extent to which there is also parallelism in craniofacial development across cave populations. Since multiple forces may be acting upon variation in the <i>A. mexicanus</i> system, including phylogenetic history, selection, and developmental constraint, several outcomes are possible. For example, eye regression may have triggered a conserved series of compensatory developmental events, in which case we would expect to observe highly similar craniofacial phenotypes across cave populations. Selection for cave-specific foraging may also lead to the evolution of a conserved craniofacial phenotype, especially in regions of the head directly associated with feeding. Alternatively, in the absence of a common axis of selection or strong developmental constraints, craniofacial shape may evolve under neutral processes such as gene flow, drift, and bottlenecking, in which case patterns of variation should reflect the evolutionary history of <i>A. mexicanus</i>. Our results found that cave-adapted populations do share certain anatomical features; however, they generally did not support the hypothesis of a conserved craniofacial phenotype across caves, as nearly every pairwise comparison was statistically significant, with greater effect sizes noted between more distantly related cave populations with little gene flow. A similar pattern was observed for developmental trajectories. We also found that morphological disparity was lower among all three cave populations versus surface fish, suggesting eye loss is not associated with increased variation, which would be consistent with a release of developmental constraint. Instead, this pattern reflects the relatively low genetic diversity within cave populations. Finally, magnitudes of craniofacial integration were found to be similar among all groups, meaning that coordinated development among anatomical units is robust to eye loss in <i>A. mexicanus</i>. We conclude that, in contrast to many conserved phenotypes across cave populations, global craniofacial shape is more variable, and patterns of shape variation are more in line with population structure than developmental architecture or selection.</p>","PeriodicalId":13666,"journal":{"name":"Integrative Organismal Biology","volume":"6 1","pages":"obae030"},"PeriodicalIF":2.2,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11372417/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142132634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of Habitat and Fruit Scent on the Interactions between Short-tailed Fruit Bats and Piper Plants. 栖息地和果实气味对短尾果蝠与瓜蒌植物相互作用的影响
IF 2.2 4区 生物学
Integrative Organismal Biology Pub Date : 2024-07-29 eCollection Date: 2024-01-01 DOI: 10.1093/iob/obae028
S Sil, F Visconti, G Chaverri, S E Santana
{"title":"Effects of Habitat and Fruit Scent on the Interactions between Short-tailed Fruit Bats and <i>Piper</i> Plants.","authors":"S Sil, F Visconti, G Chaverri, S E Santana","doi":"10.1093/iob/obae028","DOIUrl":"10.1093/iob/obae028","url":null,"abstract":"<p><p><i>Piper</i> is a mega-diverse genus of pioneer plants that contributes to the maintenance and regeneration of tropical forests. In the Neotropics, <i>Carollia</i> bats use olfaction to forage for <i>Piper</i> fruit and are a main disperser of <i>Piper</i> seeds via consumption and subsequent defecation during flight. In return, <i>Piper</i> fruits provide essential nutrients for <i>Carollia</i> year-round. There is evidence that the types and diversity of <i>Piper</i> frugivores are influenced by the primary habitat type of different <i>Piper</i> species (forest and gap), with forest <i>Piper</i> depending more on bats for seed dispersal; however, this pattern has not been tested broadly. We aimed to characterize and compare the interactions between <i>Carollia</i> and <i>Piper</i> across forested and gap habitats, and further investigate whether differences in fruit traits relevant to bat foraging (i.e., scent) could underlie differences in <i>Carollia-Piper</i> interactions. We collected nightly acoustic ultrasonic recordings and 24 h camera trap data in La Selva, Costa Rica across 12 species of <i>Piper</i> (six forest, six gap) and integrated this information with data on <i>Carollia</i> diet and <i>Piper</i> fruit scent. Merging biomonitoring modalities allowed us to characterize ecological interactions in a hierarchical manner: from general activity and presence of bats, to visitations and inspections of plants, to acquisition and consumption of fruits. We found significant differences in <i>Carollia-Piper</i> interactions between forested and gap habitats; however, the type of biomonitoring modality (camera trap, acoustics, diet) influenced our ability to detect these differences. Forest <i>Piper</i> were exclusively visited by bats, whereas gap <i>Piper</i> had a more diverse suite of frugivores; the annual diet of <i>Carollia</i>, however, is dominated by gap <i>Piper</i> since these plants produce fruit year-round. We found evidence that fruit scent composition significantly differs between forest and gap <i>Piper</i>, which highlights the possibility that bats could be using chemical cues to differentially forage for gap vs. forest <i>Piper</i>. By integrating studies of <i>Piper</i> fruit scent, plant visitation patterns, and <i>Carollia</i> diet composition, we paint a clearer picture of the ecological interactions between <i>Piper</i> and <i>Carollia</i>, and plant-animal mutualisms more generally.</p>","PeriodicalId":13666,"journal":{"name":"Integrative Organismal Biology","volume":"6 1","pages":"obae028"},"PeriodicalIF":2.2,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11316396/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141916613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Soft Palate Enables Extreme Feeding and Explosive Breathing in the Fin Whale (Balaenoptera physalus). 软腭使长须鲸(Balaenoptera physalus)能够进行极限进食和爆炸性呼吸。
IF 2.2 4区 生物学
Integrative Organismal Biology Pub Date : 2024-07-09 eCollection Date: 2024-01-01 DOI: 10.1093/iob/obae026
A W Vogl, H Petersen, K N Gil, R Cieri, R E Shadwick
{"title":"The Soft Palate Enables Extreme Feeding and Explosive Breathing in the Fin Whale (<i>Balaenoptera physalus</i>).","authors":"A W Vogl, H Petersen, K N Gil, R Cieri, R E Shadwick","doi":"10.1093/iob/obae026","DOIUrl":"10.1093/iob/obae026","url":null,"abstract":"<p><p>The evolution of lunge feeding in rorqual whales was associated with the evolution of several unique morphological features that include non-synovial ligamentous temporomandibular joints, a tongue that can invert and extend backward to the umbilicus, walls of the oral cavity that can dramatically expand, and muscles and nerves that are stretchy. Also, among the acquired features was an enlargement of the rostral end of the soft palate into an oral plug that occludes the opening between the oral cavity and pharynx and prevents water incursion into the pharynx during the engulfment phase of a feeding lunge. During this engulfment phase of a lunge, the volume of water entering the oral cavity can exceed the volume of the whale itself. Here, using dissection of fetuses and adults and a magnetic resonance imaging dataset of a fetus, we examine the detailed anatomy of the soft palate in fin whales. We describe several innovative features relative to other mammals, including changes in the attachment and positions of the major extrinsic muscles of the palate, alterations in the morphology of the pterygoid processes related to the palate and pharynx, and the presence of distinct muscle layers in the part of the palate caudal to the oral plug. Based on the anatomy, we present a model for how the soft palate is positioned at rest, and how it functions during feeding, breathing, and swallowing.</p>","PeriodicalId":13666,"journal":{"name":"Integrative Organismal Biology","volume":"6 1","pages":"obae026"},"PeriodicalIF":2.2,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11261304/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141748059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Morphological and Mechanical Tube Feet Plasticity among Populations of Sea Urchin (Strongylocentrotus purpuratus). 海胆(Strongylocentrotus purpuratus)种群的形态和机械管脚可塑性。
IF 2.2 4区 生物学
Integrative Organismal Biology Pub Date : 2024-07-08 eCollection Date: 2024-01-01 DOI: 10.1093/iob/obae022
C A Narvaez, A Y Stark, M P Russell
{"title":"Morphological and Mechanical Tube Feet Plasticity among Populations of Sea Urchin (<i>Strongylocentrotus purpuratus</i>).","authors":"C A Narvaez, A Y Stark, M P Russell","doi":"10.1093/iob/obae022","DOIUrl":"10.1093/iob/obae022","url":null,"abstract":"<p><p>Sea urchins rely on an adhesive secreted by their tube feet to cope with the hydrodynamic forces of dislodgement common in nearshore, high wave-energy environments. Tube feet adhere strongly to the substrate and detach voluntarily for locomotion. In the purple sea urchin, <i>Strongylocentrotus purpuratus</i>, adhesive performance depends on both the type of substrate and the population of origin, where some substrates and populations are more adhesive than others. To explore the source of this variation, we evaluated tube foot morphology (disc surface area) and mechanical properties (maximum disc tenacity and stem breaking force) of populations native to substrates with different lithologies: sandstone, mudstone, and granite. We found differences among populations, where sea urchins native to mudstone substrates had higher disc surface area and maximum disc tenacity than sea urchins native to sandstone substrates. In a lab-based reciprocal transplant experiment, we attempted to induce a plastic response in tube foot morphology. We placed sea urchins on nonnative substrates (i.e., mudstone sea urchins were placed on sandstone and vice versa), while keeping a subgroup of both populations on their original substrates as a control. Instead of a reciprocal morphological response, we found that all treatments, including the control, reduced their disc area in laboratory conditions. The results of this study show differences in morphology and mechanical properties among populations, which explains population differences in adhesive performance. Additionally, this work highlights the importance of considering the impact of phenotypic plasticity in response to captivity when interpreting the results of laboratory studies.</p>","PeriodicalId":13666,"journal":{"name":"Integrative Organismal Biology","volume":"6 1","pages":"obae022"},"PeriodicalIF":2.2,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11234643/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141579602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sharks Violate Rensch's Rule for Sexual Size Dimorphism. 鲨鱼违反了伦施的性别大小二形性规则。
IF 2.2 4区 生物学
Integrative Organismal Biology Pub Date : 2024-07-04 eCollection Date: 2024-01-01 DOI: 10.1093/iob/obae025
J H Gayford, P C Sternes
{"title":"Sharks Violate Rensch's Rule for Sexual Size Dimorphism.","authors":"J H Gayford, P C Sternes","doi":"10.1093/iob/obae025","DOIUrl":"10.1093/iob/obae025","url":null,"abstract":"<p><p>Systematic trends in body size variation exist in a multitude of vertebrate radiations, however their underlying ecological and evolutionary causes remain poorly understood. Rensch's rule describes one such trend-in which the scaling of sexual size dimorphism (SSD) depends on which sex is larger. Where SSD is male-biased, SSD should scale hyperallometrically, as opposed to hypoallometrically where SSD is female-biased. The evidence for Rensch's rule is mixed, and comes from a small subset of total vertebrate diversity. We conducted the first empirical test of Rensch's rule in sharks, seeking to confirm or refute a long-hypothesied trend. We find that sharks violate Rensch's rule, as the magnitude of SSD increases with body size despite sharks predominantly exhibiting female-biased SSD. This adds to a growing literature of vertebrate clades that appear not to follow Rensch's rule, suggesting the absence of a single, conserved scaling trend for SSD amongst vertebrates. It is likely that selection associated with fecundity results in the \"inverse Rensch's rule\" observed in sharks, although additional studies will be required to fully reveal the factors underlying SSD variation in this clade.</p>","PeriodicalId":13666,"journal":{"name":"Integrative Organismal Biology","volume":"6 1","pages":"obae025"},"PeriodicalIF":2.2,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11247179/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141619819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Morphology and Mechanics of the Fin Whale Esophagus: The Key to Fast Processing of Large Food Volumes by Rorquals. 长须鲸食道的形态和力学:长须鲸食道的形态和力学:长须鲸快速处理大量食物的关键。
IF 2.2 4区 生物学
Integrative Organismal Biology Pub Date : 2024-07-01 eCollection Date: 2024-01-01 DOI: 10.1093/iob/obae020
K N Gil, A W Vogl, R E Shadwick
{"title":"Morphology and Mechanics of the Fin Whale Esophagus: The Key to Fast Processing of Large Food Volumes by Rorquals.","authors":"K N Gil, A W Vogl, R E Shadwick","doi":"10.1093/iob/obae020","DOIUrl":"10.1093/iob/obae020","url":null,"abstract":"<p><p>Lunge feeding rorqual whales feed by engulfing a volume of prey laden water that can be as large as their own body. Multiple feeding lunges occur during a single foraging dive and the time between each lunge can be as short as 30 s (Goldbogen et al. 2013). During this short inter-lunge time, water is filtered out through baleen to concentrate prey in the oral cavity, and then the prey is swallowed prior to initiating the next lunge. Prey density in the ocean varies greatly, and despite the potential of swallowing a massive volume of concentrated prey as a slurry, the esophagus of rorqual whales has been anecdotally described as unexpectedly narrow with a limited capacity to expand. How rorquals swallow large quantities of food down a narrow esophagus during a limited inter-lunge time remains unknown. Here, we show that the small diameter muscular esophagus in the fin whale is optimized to transport a slurry of food to the stomach. A thick wall of striated muscle occurs at the pharyngeal end of the esophagus which, together with the muscular wall of the pharynx, may generate a pressure head for transporting the food down the esophagus to the stomach as a continuous stream rather than separating the food into individual boluses swallowed separately. This simple model is consistent with estimates of prey density and stomach capacity. Rorquals may be the only animals that capture a volume of food too large to swallow as a single intact bolus without oral processing, so the adaptations of the esophagus are imperative for transporting these large volumes of concentrated food to the stomach during a time-limited dive involving multiple lunges.</p>","PeriodicalId":13666,"journal":{"name":"Integrative Organismal Biology","volume":"6 1","pages":"obae020"},"PeriodicalIF":2.2,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11221840/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141497949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Amphibian Segmentation Clock Models Suggest How Large Genome and Cell Sizes Slow Developmental Rate. 两栖动物分段时钟模型揭示大基因组和大细胞如何减缓发育速度
IF 2.2 4区 生物学
Integrative Organismal Biology Pub Date : 2024-06-19 eCollection Date: 2024-01-01 DOI: 10.1093/iob/obae021
A Taylor, A Prasad, R Lockridge Mueller
{"title":"Amphibian Segmentation Clock Models Suggest How Large Genome and Cell Sizes Slow Developmental Rate.","authors":"A Taylor, A Prasad, R Lockridge Mueller","doi":"10.1093/iob/obae021","DOIUrl":"10.1093/iob/obae021","url":null,"abstract":"<p><p>Evolutionary increases in genome size, cell volume, and nuclear volume have been observed across the tree of life, with positive correlations documented between all three traits. Developmental tempo slows as genomes, nuclei, and cells increase in size, yet the driving mechanisms are poorly understood. To bridge this gap, we use a mathematical model of the somitogenesis clock to link slowed developmental tempo with changes in intra-cellular gene expression kinetics induced by increasing genome size and nuclear volume. We adapt a well-known somitogenesis clock model to two model amphibian species that vary 10-fold in genome size: <i>Xenopus laevis</i> (3.1 Gb) and <i>Ambystoma mexicanum</i> (32 Gb). Based on simulations and backed by analytical derivations, we identify parameter changes originating from increased genome and nuclear size that slow gene expression kinetics. We simulate biological scenarios for which these parameter changes mathematically recapitulate slowed gene expression in <i>A. mexicanum</i> relative to <i>X. laevis</i>, and we consider scenarios for which additional alterations in gene product stability and chromatin packing are necessary. Results suggest that slowed degradation rates as well as changes induced by increasing nuclear volume and intron length, which remain relatively unexplored, are significant drivers of slowed developmental tempo.</p>","PeriodicalId":13666,"journal":{"name":"Integrative Organismal Biology","volume":"6 1","pages":"obae021"},"PeriodicalIF":2.2,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11245677/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141616317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信