Insect SciencePub Date : 2024-11-27DOI: 10.1111/1744-7917.13475
Felipe Martelli, Andre Nogueira Alves, Ying Ting Yang, Philip Batterham, Nina Wedell
{"title":"Genotype and sex affect the combined impact of temperature and low-dose insecticide exposure on insect survival.","authors":"Felipe Martelli, Andre Nogueira Alves, Ying Ting Yang, Philip Batterham, Nina Wedell","doi":"10.1111/1744-7917.13475","DOIUrl":"https://doi.org/10.1111/1744-7917.13475","url":null,"abstract":"<p><p>Insecticide contamination and climate change are key factors driving the global decline in insect populations. However, how these factors interact to impact insect survival remains uncertain. In this study, we examined the effects of sex and genotype on the response to long-term low insecticide exposure at two temperatures, 18 °C and 28 °C, using the Drosophila melanogaster model. We focused on a polymorphic gene, Cyp6g1, known for conferring broad insecticide resistance. We found that while temperature and insecticide have a synergistic effect on mortality of susceptible flies (Cyp6g1-M allele), they act additively on resistant flies (Cyp6g1-BA allele). And whereas the mortality of BA flies exposed to insecticides is strongly dependent on sex at 18 °C, no sex bias is found at 28 °C. Under no insecticide exposure, BA females showed shorter median lifespan than males regardless of temperature, possibly reflecting a cost associated with the resistant allele. Surprisingly, across all genotypes, females showed lower Cyp6g1 gene expression levels than males, which contrasts with their higher insecticide tolerance. Temperature and insecticide exposure had small effects on Cyp6g1 expression levels, suggesting the presence of additional mechanisms of resistance. Our results indicate that the effect of high insecticide doses on insect mortality cannot be used to predict how insects will respond to low contaminating doses, especially when considering the strong interactions between sex, temperature, and genotype. The combined effects of temperature and long-term low insecticide exposure are complex and can have major impacts on insect population dynamics and survival.</p>","PeriodicalId":13618,"journal":{"name":"Insect Science","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142739405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Insect SciencePub Date : 2024-11-25DOI: 10.1111/1744-7917.13466
Susana Pallarés, José Antonio Carbonell, Félix Picazo, David T Bilton, Andrés Millán, Pedro Abellán
{"title":"Intraspecific variation of thermal tolerance along elevational gradients: the case of a widespread diving beetle (Coleoptera: Dytiscidae).","authors":"Susana Pallarés, José Antonio Carbonell, Félix Picazo, David T Bilton, Andrés Millán, Pedro Abellán","doi":"10.1111/1744-7917.13466","DOIUrl":"https://doi.org/10.1111/1744-7917.13466","url":null,"abstract":"<p><p>Species distributed across wide elevational gradients are likely to experience local thermal adaptation and exhibit high thermal plasticity, as these gradients are characterised by steep environmental changes over short geographic distances (i.e., strong selection differentials). The prevalence of adaptive intraspecific variation in thermal tolerance with elevation remains unclear, however, particularly in freshwater taxa. We explored variation in upper and lower thermal limits and acclimation capacity among Iberian populations of adults of the widespread water beetle Agabus bipustulatus (Dytiscidae) across a 2000 m elevational gradient, from lowland to alpine areas. Since mean and extreme temperatures decline with elevation, we predicted that populations at higher elevations will show lower heat tolerance and higher cold tolerance than lowland ones. We also explored whether acclimation capacity is positively related with climatic variability across elevations. We found significant variation in thermal limits between populations of A. bipustulatus, but no evidence of local adaptation to different thermal conditions across the altitudinal gradient, as relationships between thermal limits and elevation or climatic variables were largely nonsignificant. Furthermore, plasticities of both upper and lower thermal limits were consistently low in all populations. These results suggest thermal niche conservatism in this species, likely due to gene flow counteracting the effects of divergent selection, or adaptations in other traits that buffer exposure to climate extremes. The limited adaptive potential and plasticity of thermal tolerance observed in A. bipustulatus suggest that even generalist species, distributed across wide environmental gradients, may have limited resilience to global warming.</p>","PeriodicalId":13618,"journal":{"name":"Insect Science","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142715769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Discovery and characterization of a novel Lepidoptera-specific antimicrobial peptide from the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae).","authors":"Wen-Xuan Qi, Feng Liu, Fang-Fang Liu, Hai-Yan Ren, Bang-Xian Zhang, Xiao-Qiang Yu, Xiang-Jun Rao","doi":"10.1111/1744-7917.13471","DOIUrl":"https://doi.org/10.1111/1744-7917.13471","url":null,"abstract":"<p><p>Antimicrobial peptides (AMPs) are critical components of innate immunity in diverse organisms, including plants, vertebrates, and insects. This study identified and characterized a novel Lepidoptera-specific AMP, named lepidoptin, from the invasive pest Spodoptera frugiperda (Lepidoptera: Noctuidae). Lepidoptin is a 116-amino acid protein containing a signal peptide and a novel β-sandwich domain that is distinct from previously reported AMPs. Temporal and spatial expression analyses revealed a significant upregulation of the lepidoptin gene in vivo and in cultured SF9 cells in response to pathogens. Molecular docking analysis identified a specific binding cavity. Enzyme-linked immunosorbent assay and binding assays confirmed that lepidoptin can bind to pathogen-associated molecular patterns, bacteria, and fungi. Recombinant lepidoptin exhibited potent antibacterial activity by inducing bacterial agglutination, inhibiting bacterial growth, increasing bacterial membrane permeability, and preventing biofilm formation. Lepidoptin also showed antifungal activity against the entomopathogenic fungus Beauveria bassiana by inhibiting spore germination, increasing fungal cell permeability, and increasing reactive oxygen species. Injection of recombinant lepidoptin into S. frugiperda larvae increased survival after B. bassiana infection, whereas knockdown of lepidoptin by RNA interference decreased larval survival. In addition, lepidoptin showed antimicrobial activity against the plant pathogen Fusarium graminearum by inhibiting spore germination and alleviating disease symptoms in wheat seedlings and cherry tomatoes. This study demonstrates the remarkable dual functionality of lepidoptin in enhancing S. frugiperda immunity and controlling plant pathogens, making it a promising candidate for biocontrol strategies in both pest management and plant disease prevention.</p>","PeriodicalId":13618,"journal":{"name":"Insect Science","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142647956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Insect SciencePub Date : 2024-11-15DOI: 10.1111/1744-7917.13467
Meng-Hao Xia, Chuan-Zhen Li, Yu-Chuang Li, Deng Pan, Zi-Ran Wang, Wei Dou, Jin-Jun Wang
{"title":"Lufenuron affects the fecundity of Panonychus citri by regulating the methyl farnesoate-ponasterone A network.","authors":"Meng-Hao Xia, Chuan-Zhen Li, Yu-Chuang Li, Deng Pan, Zi-Ran Wang, Wei Dou, Jin-Jun Wang","doi":"10.1111/1744-7917.13467","DOIUrl":"10.1111/1744-7917.13467","url":null,"abstract":"<p><p>In insects, the juvenile hormone (JH) and 20-hydroxyecdysone (20E) pathways jointly regulate fecundity, but only methyl farnesoate (MF) and ponasterone A exist in mites. Comparative transcriptomic analysis in Panonychus citri showed that E75B was significantly downregulated when exposed to lufenuron. Knockdown of E75B significantly affects the expression of vitellogenin (Vg), Fushi tarazu factor 1 (Ftz-f1) and juvenile hormone acid O-methyltransferase (JHAMT), reducing fecundity in mites. The knockdown of Ftz-f1 produced a more significant effect than the knockdown of E75B, indicating that the ponasterone A pathway positively regulates fecundity in P. citri. After the knockdown of JHAMT, the expression levels of both Vg and Ftz-f1 and fecundity were significantly increased, along with the inhibition of Kr-h1, suggesting that JHAMT was negatively correlated with fecundity in the regulatory network. Knockdown of Kr-h1 inhibited the expression of Vg and Ftz-f1 and fecundity, and whether the drop in fecundity is caused by Kr-h1 or Ftz-f1 is unclear. Subsequent feeding with MF induced Kr-h1 and Vg expression, whereas no significant effects were observed for JHAMT and Ftz-f1. Therefore, the MF pathway stimulates fecundity independently. RNA interference (RNAi) showed that JHAMT and Ftz-f1 inhibited each other, resulting in opposite effects of MF and ponasterone A pathways on steady-state fecundity when either factor changed. Meanwhile, JHAMT knockdown led to increased fecundity, indicating that the stimulating effect of the ponasterone A pathway was greater than the inhibiting effect of the MF pathway, and demonstrating the dominant role of the ponasterone A pathway. Therefore, the interaction between JHAMT and Ftz-f1 may be closely associated with the maintenance of MF-ponasterone A regulatory network homeostasis and is involved in the reduction of fecundity in P. citri induced by exposure to lufenuron.</p>","PeriodicalId":13618,"journal":{"name":"Insect Science","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142619628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Insect SciencePub Date : 2024-11-14DOI: 10.1111/1744-7917.13469
Lin Kong, Huiying Hu, Pengfei Li, Mingbo Qu
{"title":"Tissue-specific alternative splicing and the functional differentiation of LmLPMO15-1 in Locusta migratoria.","authors":"Lin Kong, Huiying Hu, Pengfei Li, Mingbo Qu","doi":"10.1111/1744-7917.13469","DOIUrl":"10.1111/1744-7917.13469","url":null,"abstract":"<p><p>Insect lytic polysaccharide monooxygenases (LPMO15s) are newly discovered copper-dependent enzymes that promote chitin degradation in insect through oxidative cleavage of glycosidic bonds. They are potential pesticide targets due to their critical role for chitin turnover in the integument, trachea, and peritrophic matrix of the midgut during insect molting. However, the knowledge about whether and how LPMO15s participate in chitin turnover in other tissues is still insufficient. Here, using the orthopteran pest Locusta migratoria as a model, a novel alternative splicing site of LmLPMO15-1 was discovered and it produces 2 variants, LmLPMO15-1a and LmLPMO15-1b. The transcripts of LmLPMO15-1a and LmLPMO15-1b were specifically expressed in the trachea and foregut, respectively. RNA interference targeting LmLPMO15-1 (a common fragment shared by both LmLPMO15-1a and LmLPMO15-1b), a specific region of LmLPMO15-1a or LmLPMO15-1b all significantly reduced survival rate of nymphs and induced lethal phenotypes with developmental stasis or molt failure. Ultrastructure analysis demonstrated that LmLPMO15-1b was specifically involved in foregut old cuticle degradation, while LmLPMO15-1a was exclusively responsible for the degradation of the tracheal old cuticle. This study revealed LmLPMO15-1 achieved tissue-specific functional differentiation through alternative splicing, and proved the significance of the spliced variants during insect growth and development. It provides new strategies for pest control targeting LPMO15-1.</p>","PeriodicalId":13618,"journal":{"name":"Insect Science","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142619639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Insect SciencePub Date : 2024-11-10DOI: 10.1111/1744-7917.13464
Shigang Fei, Mian Muhammad Awais, Jinglei Zou, Junming Xia, Yeyuan Wang, Yibing Kong, Min Feng, Jingchen Sun
{"title":"Single-nucleus RNA sequencing reveals midgut cellular heterogeneity and transcriptional profiles in Bombyx mori cytoplasmic polyhedrosis virus infection.","authors":"Shigang Fei, Mian Muhammad Awais, Jinglei Zou, Junming Xia, Yeyuan Wang, Yibing Kong, Min Feng, Jingchen Sun","doi":"10.1111/1744-7917.13464","DOIUrl":"https://doi.org/10.1111/1744-7917.13464","url":null,"abstract":"<p><p>The gut is not only used by insects as an organ for the digestion of food and absorption of nutrients but also as an important barrier against the invasion and proliferation of pathogenic microorganisms. Bombyx mori cytoplasmic polyhedrosis virus (BmCPV), an insect-specific virus, predominantly colonizes the midgut epithelial cells of the silkworm, thereby jeopardizing its normal growth. However, there is limited knowledge of the cellular immune responses to viral infection and whether the infection is promoted or inhibited by different types of cells in the silkworm midgut. In this study, we used single-nucleus RNA sequencing to identify representative enteroendocrine cells, enterocytes, and muscle cell types in the silkworm midgut. In addition, by analyzing the transcriptional profiles of various subpopulations in the infected and uninfected groups, we found that BmCPV infection suppresses the response of the antiviral pathways and induces the expression of BmHSP70, which plays a role in promoting BmCPV replication. However, certain immune genes in the midgut of the silkworm, such as BmLebocin3, were induced upon viral infection, and downregulation of BmLEB3 using RNA interference promoted BmCPV replication in the midgut of B. mori. These results suggest that viral immune evasion and active host resistance coexist in BmCPV-infected silkworms. We reveal the richness of cellular diversity in the midgut of B. mori larvae by single-nucleus RNA sequencing analysis and provide new insights into the complex interactions between the host and the virus at the single-cell level.</p>","PeriodicalId":13618,"journal":{"name":"Insect Science","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142619630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Insect SciencePub Date : 2024-11-03DOI: 10.1111/1744-7917.13460
Vijaya Movva, Junwei Zhu, Amy Roda, Paul Kendra, Xiangbing Yang, Kevin Cloonan, Jia-Wei Tay, Dong H Cha
{"title":"Deterrence and behavioral mode of coconut oil-derived free fatty acids on Zeugodacus cucurbitae oviposition.","authors":"Vijaya Movva, Junwei Zhu, Amy Roda, Paul Kendra, Xiangbing Yang, Kevin Cloonan, Jia-Wei Tay, Dong H Cha","doi":"10.1111/1744-7917.13460","DOIUrl":"https://doi.org/10.1111/1744-7917.13460","url":null,"abstract":"<p><p>Previous studies have shown oviposition deterring properties of 8 coconut free fatty acid (CFFA) compounds on fruit flies with different key deterrent components for different species. Here we evaluated oviposition deterrence of CFFA using laboratory 2-choice bioassays against Zeugodacus cucurbitae, determined key-bioactive deterrent compounds, and evaluated their behavioral mode. Unlike other reported fruit fly species, CFFA mixture increased Z. cucurbitae oviposition when directly applied on an oviposition substrate. When tested individually in subsequent tests, 4 compounds (caprylic, capric, oleic, and linoleic acids) significantly reduced the oviposition (\"negative-compounds\"), 1 compound (stearic acid) had no effect (\"neutral-compound\"), and 3 compounds (lauric, myristic, and palmitic acids) stimulated the oviposition (\"positive-compounds\"). The 4-component negative-compound blend was effective at reducing oviposition. However, adding stearic acid to the 4-component blend (5-component blend, 5c) further reduced oviposition. Adding any of the positive-compounds to the 5c resulted in loss of oviposition deterrence, suggesting the 5c as the key deterrent component blend. The blend was also effective in no-choice assays and when applied on cucumbers, a preferred host of Z. cucurbitae. When given a choice, Z. cucurbitae made 48.5% fewer visits, spent 39% less time, and oviposited 88.2% fewer eggs per min on 5c treated pumpkin agar than on control agar, suggesting that the 5c blend has both spatial repellency and contact deterrence. Given that all compounds are registered food additives and generally regarded as safe, this blend has potential application in behavioral control strategies, such as push-pull, to protect host fruit against Z. cucurbitae.</p>","PeriodicalId":13618,"journal":{"name":"Insect Science","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142568350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"NompC regulates locomotion and touch sensation in Bactrocera dorsalis.","authors":"Hong-Ai Su, Miao-Miao Zhang, Hui Wei, Hai-Kuo Yu, Yong-Yue Lu, Yi-Xiang Qi","doi":"10.1111/1744-7917.13459","DOIUrl":"https://doi.org/10.1111/1744-7917.13459","url":null,"abstract":"<p><p>No mechanoreceptor potential C (NompC) is a major mechanotransduction channel with an important role in sensing of external mechanical stimuli by insects, which help these organisms to avoid injury and adapt to environmental changes. To explore the biological functions of NompC in Bactrocera dorsalis, a notorious agricultural pest, we successfully generated NompC knockout strains using clustered regularly interspaced small palindromic repeats (CRISPR) / CRISPR-associated nuclease 9 (Cas9) technology. BdorNompC knockout led to an adult lethal phenotype, with approximately 100% mortality at 3 d after eclosion. Morphological observation revealed that the legs and wings of BdorNompC knockout insects were deformed, while behavioral assays showed that the locomotion was impaired in both adults and larvae, relative to that of the wild-type strain. Moreover, BdorNompC knockout reduced gentle-touch response in larvae. These results suggest that BdorNompC is critical for B. dorsalis survival, and that this mechanosensation channel represents a potential new target for pest control agents. Our findings also represent novel evidence indicating that insect NompC is involved in modulating adult wing and leg morphology.</p>","PeriodicalId":13618,"journal":{"name":"Insect Science","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142568351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Differences in within-plant oviposition preferences and immature survival between Orius predators and the importance of spatial availability of prey.","authors":"Angelos Mouratidis, Christiaan Bootsma, Marcel Dicke, Gerben J Messelink","doi":"10.1111/1744-7917.13465","DOIUrl":"https://doi.org/10.1111/1744-7917.13465","url":null,"abstract":"<p><p>Oviposition preferences of plant-feeding predators remain a complex topic, as such omnivores choose oviposition sites by assessing both plant characteristics and the quality and quantity of nearby animal food sources. Orius predators are omnivores that oviposit endophytically, thus plant characteristics play an important role in their oviposition choices. In this study, we assessed the oviposition and foraging preferences of O. laevigatus and O. majusculus on vegetative and flowering chrysanthemum plants, and assessed the survival of their offspring on differently aged tissues. Our results show a preference of O. laevigatus for young and tender chrysanthemum tissues, where the survival of the nymphs was longer on a plant diet. In contrast, O. majusculus selected older plant parts when laying its eggs, and nymphs did not survive long on any of the plant tissues offered. The foraging activity of Orius females for animal prey (Ephestia kuehniella eggs) did not reveal any specific pattern for either of the two predators. Furthermore, we tested the plasticity of the within-plant oviposition preferences of O. laevigatus, by offering sentinel prey (E. kuehniella eggs) on distinct plant parts. We found that more eggs were laid in older plant tissue when animal prey was offered lower on the plant. Overall, our findings show that oviposition choices of Orius predators are based on a dynamic interplay between plant characteristics, presence of animal and/or floral food sources among other factors, and that differences may well occur between closely related species based on the importance of plant resources in their diet.</p>","PeriodicalId":13618,"journal":{"name":"Insect Science","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142557750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Insect SciencePub Date : 2024-10-21DOI: 10.1111/1744-7917.13461
Alain Dejean, Jérôme Orivel, Xim Cerdá, Frédéric Azémar, Bruno Corbara, Axel Touchard
{"title":"Foraging by predatory ants: A review.","authors":"Alain Dejean, Jérôme Orivel, Xim Cerdá, Frédéric Azémar, Bruno Corbara, Axel Touchard","doi":"10.1111/1744-7917.13461","DOIUrl":"https://doi.org/10.1111/1744-7917.13461","url":null,"abstract":"<p><p>In this review, we show that predatory ants have a wide range of foraging behavior, something expected given their phylogenetic distance and the great variation in their colony size, life histories, and nesting habitats as well as prey diversity. Most ants are central-place foragers that detect prey using vision and olfaction. Ground-dwelling species can forage solitarily, the ancestral form, but generally recruit nestmates to retrieve large prey or a group of prey. Typically, ants are omnivorous, but some species are strict predators preying on detritivorous invertebrates or arthropod eggs, while those specialized on termites or other ants often have scouts that localize their target and then trigger a raid. They can use compounds that ease this task, including chemical insignificance, mimicry, and venoms triggering submissive behavior. Army ants include 8 Dorylinae and some species from other subfamilies, all having wingless queens and forming raids. Dorylinae from the Old World migrate irregularly to new nesting sites. The foraging of most New World species that prey on the brood of other ants is regulated by their biological cycle that alternates between a \"nomadic phase\" when the colony relocates between different places and a \"stationary phase\" when the colony stays in a bivouac constituting a central place. Among arboreal ants, dominant species forage in groups, detecting prey visually, but can use vibrations, particularly when associated with myrmecophytes. Some species of the genera Allomerus and Azteca use fungi to build a gallery-shaped trap with small holes under which they hide to ambush prey.</p>","PeriodicalId":13618,"journal":{"name":"Insect Science","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142464328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}