{"title":"Enhancer RNA commits osteogenesis via microRNA-3129 expression in human bone marrow-derived mesenchymal stem cells.","authors":"Anh Phuong Nguyen, Kaoru Yamagata, Shigeru Iwata, Gulzhan Trimova, Tong Zhang, Yu Shan, Mai-Phuong Nguyen, Koshiro Sonomoto, Shingo Nakayamada, Shigeaki Kato, Yoshiya Tanaka","doi":"10.1186/s41232-022-00228-4","DOIUrl":"https://doi.org/10.1186/s41232-022-00228-4","url":null,"abstract":"<p><strong>Background: </strong>Highly regulated gene expression program underlies osteogenesis of mesenchymal stem cells (MSCs), but the regulators in the program are not entirely identified. As enhancer RNAs (eRNAs) have recently emerged as a key regulator in gene expression, we assume a commitment of an eRNA in osteogenesis.</p><p><strong>Methods: </strong>We performed in silico analysis to identify potential osteogenic microRNA (miRNA) gene predicted to be regulated by super-enhancers (SEs). SE inhibitor treatment and eRNA knocking-down were used to confirm the regulational mechanism of eRNA. miRNA function in osteogenesis was elucidated by miR mimic and inhibitor transfection experiments.</p><p><strong>Results: </strong>miR-3129 was found to be located adjacent in a SE (osteoblast-specific SE_46171) specifically activated in osteoblasts by in silico analysis. A RT-quantitative PCR analysis of human bone marrow-derived MSC (hBMSC) cells showed that eRNA_2S was transcribed from the SE with the expression of miR-3129. Knockdown of eRNA_2S by locked nucleic acid as well as treatment of SE inhibitors JQ1 or THZ1 resulted in low miR-3129 levels. Overexpression of miR-3129 promoted hBMSC osteogenesis, while knockdown of miR-3129 inhibited hBMSC osteogenesis. Solute carrier family 7 member 11 (SLC7A11), encoding a bone formation suppressor, was upregulated following miR-3129-5p inhibition and identified as a target gene for miR-3129 during differentiation of hBMSCs into osteoblasts.</p><p><strong>Conclusions: </strong>miR-3129 expression is regulated by SEs via eRNA_2S and this miRNA promotes hBMSC differentiation into osteoblasts through downregulating the target gene SLC7A11. Thus, the present study uncovers a commitment of an eRNA via a miR-3129/SLC7A11 regulatory pathway during osteogenesis of hBMSCs.</p>","PeriodicalId":13588,"journal":{"name":"Inflammation and Regeneration","volume":" ","pages":"43"},"PeriodicalIF":8.1,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9479228/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40363985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Entering the era of precision medicine through multiomics approach.","authors":"Keishi Fujio","doi":"10.1186/s41232-022-00229-3","DOIUrl":"https://doi.org/10.1186/s41232-022-00229-3","url":null,"abstract":"","PeriodicalId":13588,"journal":{"name":"Inflammation and Regeneration","volume":" ","pages":"42"},"PeriodicalIF":8.1,"publicationDate":"2022-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9461182/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33456081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Miho Kobayashi, Kashio Fujiwara, Kazuki Takahashi, Yusuke Yoshioka, Takahiro Ochiya, Katarzyna A Podyma-Inoue, Tetsuro Watabe
{"title":"Transforming growth factor-β-induced secretion of extracellular vesicles from oral cancer cells evokes endothelial barrier instability via endothelial-mesenchymal transition.","authors":"Miho Kobayashi, Kashio Fujiwara, Kazuki Takahashi, Yusuke Yoshioka, Takahiro Ochiya, Katarzyna A Podyma-Inoue, Tetsuro Watabe","doi":"10.1186/s41232-022-00225-7","DOIUrl":"https://doi.org/10.1186/s41232-022-00225-7","url":null,"abstract":"<p><strong>Background: </strong>During metastasis, cancer cells undergo epithelial-mesenchymal transition (EMT) in response to transforming growth factor-β (TGF-β), which is abundant in the tumor microenvironment, and acquire invasive and metastatic potentials. Metastasis to distant organs requires intravascular invasion and extravasation of cancer cells, which is accompanied by the disruption of the adhesion between vascular endothelial cells. Cancer cell-derived extracellular vesicles (EVs) have been suggested to induce the destabilization of normal blood vessels at the metastatic sites. However, the roles of EVs secreted from cancer cells that have undergone EMT in the destabilization of blood vessels remain to be elucidated. In the present study, we characterized EVs secreted by oral cancer cells undergoing TGF-β-induced EMT and elucidated their effects on the characteristics of vascular endothelial cells.</p><p><strong>Methods: </strong>Induction of EMT by TGF-β in human oral cancer cells was assessed using quantitative RT-PCR (qRT-PCR) and immunocytochemistry. Oral cancer cell-derived EVs were isolated from the conditioned media of oral cancer cells that were treated with or without TGF-β using ultracentrifugation, and characterized using nanoparticle tracking analysis and immunoblotting. The effects of EVs on human umbilical artery endothelial cells were examined by qRT-PCR, cellular staining, and permeability assay. The significant differences between means were determined using a t-test or one-way analysis of variance with Tukey's multiple comparisons test.</p><p><strong>Results: </strong>Oral cancer cells underwent EMT in response to TGF-β as revealed by changes in the expression of epithelial and mesenchymal cell markers at both the RNA and protein levels. Oral cancer cells treated with TGF-β showed increased EV production and altered EV composition when compared with untreated cells. The EVs that originated from cells that underwent EMT by TGF-β induced endothelial-mesenchymal transition, which was characterized by the decreased and increased expression of endothelial and mesenchymal cell markers, respectively. EVs derived from oral cancer cells also induced intercellular gap formation which led to the loss of endothelial cell barrier stability.</p><p><strong>Conclusions: </strong>EVs released from oral cancer cells that underwent TGF-β-induced EMT target endothelial cells to induce vascular destabilization. Detailed characterization of oral cancer-derived EVs and factors responsible for EV-mediated vascular instability will lead to the development of agents targeting metastasis.</p>","PeriodicalId":13588,"journal":{"name":"Inflammation and Regeneration","volume":" ","pages":"38"},"PeriodicalIF":8.1,"publicationDate":"2022-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9441046/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40345849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Thymic self-antigen expression for immune tolerance and surveillance.","authors":"Rayene Benlaribi, Qiao Gou, Hiroyuki Takaba","doi":"10.1186/s41232-022-00211-z","DOIUrl":"https://doi.org/10.1186/s41232-022-00211-z","url":null,"abstract":"<p><p>T cells are a group of lymphocytes that play a central role in the immune system, notably, eliminating pathogens and attacking cancer while being tolerant of the self. Elucidating how immune tolerance is ensured has become a significant research issue for understanding the pathogenesis of autoimmune diseases as well as cancer immunity. T cell immune tolerance is established mainly in the thymic medulla by the removal of self-responsive T cells and the generation of regulatory T cells, this process depends mainly on the expression of a variety of tissue restricted antigens (TRAs) by medullary thymic epithelial cells (mTECs). The expression of TRAs is known to be regulated by at least two independent factors, Fezf2 and Aire, which play non-redundant and complementary roles by different mechanisms. In this review, we introduce the molecular logic of thymic self-antigen expression that underlies T cell selection for the prevention of autoimmunity and the establishment of immune surveillance.</p>","PeriodicalId":13588,"journal":{"name":"Inflammation and Regeneration","volume":" ","pages":"28"},"PeriodicalIF":8.1,"publicationDate":"2022-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9440513/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40346512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Osteoclast biology in the single-cell era.","authors":"Masayuki Tsukasaki, Hiroshi Takayanagi","doi":"10.1186/s41232-022-00213-x","DOIUrl":"https://doi.org/10.1186/s41232-022-00213-x","url":null,"abstract":"<p><p>Osteoclasts, the only cells that can resorb bone, play a central role in bone homeostasis as well as bone damage under pathological conditions such as osteoporosis, arthritis, periodontitis, and bone metastasis. Recent studies using single-cell technologies have uncovered the regulatory mechanisms underlying osteoclastogenesis at unprecedented resolution and shed light on the possibility that there is heterogeneity in the origin, function, and fate of osteoclast-lineage cells. Here, we discuss the current advances and emerging concepts in osteoclast biology.</p>","PeriodicalId":13588,"journal":{"name":"Inflammation and Regeneration","volume":" ","pages":"27"},"PeriodicalIF":8.1,"publicationDate":"2022-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9438068/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40341592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Controlling skin microbiome as a new bacteriotherapy for inflammatory skin diseases.","authors":"Yoshihiro Ito, Masayuki Amagai","doi":"10.1186/s41232-022-00212-y","DOIUrl":"https://doi.org/10.1186/s41232-022-00212-y","url":null,"abstract":"<p><p>The skin serves as the interface between the human body and the environment and interacts with the microbial community. The skin microbiota consists of microorganisms, such as bacteria, fungi, mites, and viruses, and they fluctuate depending on the microenvironment defined by anatomical location and physiological function. The balance of interactions between the host and microbiota plays a pivotal role in the orchestration of skin homeostasis; however, the disturbance of the balance due to an alteration in the microbial communities, namely, dysbiosis, leads to various skin disorders. Recent developments in sequencing technology have provided new insights into the structure and function of skin microbial communities. Based on high-throughput sequencing analysis, a growing body of evidence indicates that a new treatment using live bacteria, termed bacteriotherapy, is a feasible therapeutic option for cutaneous diseases caused by dysbiosis. In particular, the administration of specific bacterial strains has been investigated as an exclusionary treatment strategy against pathogens associated with chronic skin disorders, whereas the safety, efficacy, and sustainability of this therapeutic approach using isolated live bacteria need to be further explored. In this review, we summarize our current understanding of the skin microbiota, as well as therapeutic strategies using characterized strains of live bacteria for skin inflammatory diseases. The ecosystem formed by interactions between the host and skin microbial consortium is still largely unexplored; however, advances in our understanding of the function of the skin microbiota at the strain level will lead to the development of new therapeutic methods.</p>","PeriodicalId":13588,"journal":{"name":"Inflammation and Regeneration","volume":" ","pages":"26"},"PeriodicalIF":8.1,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9434865/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40335431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiao-Gang Zhou, Wen-Qiao Qiu, Lu Yu, Rong Pan, Jin-Feng Teng, Zhi-Pei Sang, Betty Yuen-Kwan Law, Ya Zhao, Li Zhang, Lu Yan, Yong Tang, Xiao-Lei Sun, Vincent Kam Wai Wong, Chong-Lin Yu, Jian-Ming Wu, Da-Lian Qin, An-Guo Wu
{"title":"Targeting microglial autophagic degradation of the NLRP3 inflammasome for identification of thonningianin A in Alzheimer's disease.","authors":"Xiao-Gang Zhou, Wen-Qiao Qiu, Lu Yu, Rong Pan, Jin-Feng Teng, Zhi-Pei Sang, Betty Yuen-Kwan Law, Ya Zhao, Li Zhang, Lu Yan, Yong Tang, Xiao-Lei Sun, Vincent Kam Wai Wong, Chong-Lin Yu, Jian-Ming Wu, Da-Lian Qin, An-Guo Wu","doi":"10.1186/s41232-022-00209-7","DOIUrl":"https://doi.org/10.1186/s41232-022-00209-7","url":null,"abstract":"<p><strong>Background: </strong>NLRP3 inflammasome-mediated neuroinflammation plays a critical role in the pathogenesis and development of Alzheimer's disease (AD). Microglial autophagic degradation not only decreases the deposits of extracellular Aβ fibrils but also inhibits the activation of NRLP3 inflammasome. Here, we aimed to identify the potent autophagy enhancers from Penthorum chinense Pursh (PCP) that alleviate the pathology of AD via inhibiting the NLRP3 inflammasome.</p><p><strong>Methods: </strong>At first, autophagic activity-guided isolation was performed to identify the autophagy enhancers in PCP. Secondly, the autophagy effect was monitored by detecting LC3 protein expression using Western blotting and the average number of GFP-LC3 puncta per microglial cell using confocal microscopy. Then, the activation of NLRP3 inflammasome was measured by detecting the protein expression and transfected fluorescence intensity of NLRP3, ASC, and caspase-1, as well as the secretion of proinflammatory cytokines. Finally, the behavioral performance was evaluated by measuring the paralysis in C. elegans, and the cognitive function was tested by Morris water maze (MWM) in APP/PS1 mice.</p><p><strong>Results: </strong>Four ellagitannin flavonoids, including pinocembrin-7-O-[4″,6″-hexahydroxydiphenoyl]-glucoside (PHG), pinocembrin-7-O-[3″-O-galloyl-4″,6″-hexahydroxydiphenoyl]-glucoside (PGHG), thonningianin A (TA), and thonningianin B (TB), were identified to be autophagy enhancers in PCP. Among these, TA exhibited the strongest autophagy induction effect, and the mechanistic study demonstrated that TA activated autophagy via the AMPK/ULK1 and Raf/MEK/ERK signaling pathways. In addition, TA effectively promoted the autophagic degradation of NLRP3 inflammasome in Aβ(1-42)-induced microglial cells and ameliorated neuronal damage via autophagy induction. In vivo, TA activated autophagy and improved behavioral symptoms in C. elegans. Furthermore, TA might penetrate the blood-brain barrier and could improve cognitive function and ameliorate the Aβ pathology and the NLRP3 inflammasome-mediated neuroinflammation via the AMPK/ULK1 and Raf/MEK/ERK signaling pathways in APP/PS1 mice.</p><p><strong>Conclusion: </strong>We identified TA as a potent microglial autophagy enhancer in PCP that promotes the autophagic degradation of the NLRP3 inflammasome to alleviate the pathology of AD via the AMPK/ULK1 and Raf/MEK/ERK signaling pathways, which provides novel insights for TA in the treatment of AD.</p>","PeriodicalId":13588,"journal":{"name":"Inflammation and Regeneration","volume":" ","pages":"25"},"PeriodicalIF":8.1,"publicationDate":"2022-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9347127/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40687360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yang Mu, Tai-Lang Yin, Yan Zhang, Jing Yang, Yan-Ting Wu
{"title":"Diet-induced obesity impairs spermatogenesis: the critical role of NLRP3 in Sertoli cells.","authors":"Yang Mu, Tai-Lang Yin, Yan Zhang, Jing Yang, Yan-Ting Wu","doi":"10.1186/s41232-022-00203-z","DOIUrl":"https://doi.org/10.1186/s41232-022-00203-z","url":null,"abstract":"<p><strong>Background: </strong>Accumulating evidence indicates a key role of Sertoli cell (SC) malfunction in spermatogenesis impairment induced by obesity. Nucleotide-binding oligomerization domain-like receptor with a pyrin domain 3 (NLRP3) is expressed in SCs, but the role of NLRP3 in the pathological process of obesity-induced male infertility remains unclear.</p><p><strong>Methods: </strong>NLRP3-deficient mice were fed a high-fat diet for 24 weeks to establish obesity-related spermatogenesis impairment. In another set of experiments, a lentiviral vector containing a microRNA (miR)-451 inhibitor was injected into AMP-activated protein kinase α (AMPKα)-deficient mouse seminiferous tubules. Human testis samples were obtained by testicular puncture from men with obstructive azoospermia whose samples exhibited histologically normal spermatogenesis. Isolated human SCs were treated with palmitic acid (PA) to mimic obesity model in vitro.</p><p><strong>Results: </strong>Increased NLRP3 expression was observed in the testes of obese rodents. NLRP3 was also upregulated in PA-treated human SCs. NLRP3 deficiency attenuated obesity-related male infertility. SC-derived NLRP3 promoted interleukin-1β (IL-1β) secretion to impair testosterone synthesis and sperm performance and increased matrix metalloproteinase-8 (MMP-8) expression to degrade occludin via activation of nuclear factor-kappa B (NF-κB). Increased miR-451 caused by obesity, decreased AMPKα expression and sequentially increased NADPH oxidase activity were responsible for the activation of NLRP3. miR-451 inhibition protected against obesity-related male infertility, and these protective effects were abolished by AMPKα deficiency in mice.</p><p><strong>Conclusions: </strong>NLRP3 promoted obesity-related spermatogenesis impairment. Increased miR-451 expression, impaired AMPKα pathway and the subsequent ROS production were responsible for NLRP3 activation. Our study provides new insight into the mechanisms underlying obesity-associated male infertility.</p>","PeriodicalId":13588,"journal":{"name":"Inflammation and Regeneration","volume":" ","pages":"24"},"PeriodicalIF":8.1,"publicationDate":"2022-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9344614/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40664137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Extracellular vesicles in idiopathic pulmonary fibrosis: pathogenesis and therapeutics.","authors":"Yu Fujita","doi":"10.1186/s41232-022-00210-0","DOIUrl":"https://doi.org/10.1186/s41232-022-00210-0","url":null,"abstract":"<p><p>Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease that occurs due to increased fibrosis of lung tissue in response to chronic injury of the epithelium. Therapeutic options for IPF remain limited as current therapies only function to decrease disease progression. Recently, extracellular vesicles (EVs), including exosomes and microvesicles, have been recognized as paracrine communicators through the component cargo. The population of cell-specific microRNAs and proteins present in EVs can regulate gene expressions of recipient cells, resulting in modulation of biological activities. EV cargoes reflect cell types and their physiological and pathological status of donor cells. Many current researches have highlighted the functions of EVs on the epithelial phenotype and fibroproliferative response in the pathogenesis of IPF. Furthermore, some native EVs could be used as a cell-free therapeutic approach for IPF as vehicles for drug delivery, given their intrinsic biocompatibility and specific target activity. EV-based therapies have been proposed as a new potential alternative to cell-based approaches. The advantage is that EVs, depending on their source, may be less immunogenic than their parental cells, likely due to a lower abundance of transmembrane proteins such as major histocompatibility complex (MHC) proteins on the surface. In the last decade, mesenchymal stem cell (MSC)-derived EVs have been rapidly developed as therapeutic products ready for clinical trials against various diseases. Considering EV functional complexity and heterogeneity, there is an urgent need to establish refined systemic standards for manufacturing processes and regulatory requirements of these medicines. This review highlights the EV-mediated cellular crosstalk involved in IPF pathogenesis and discusses the potential for EV-based therapeutics as a novel treatment modality for IPF.</p>","PeriodicalId":13588,"journal":{"name":"Inflammation and Regeneration","volume":" ","pages":"23"},"PeriodicalIF":8.1,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9341048/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40657614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Clinical perspectives and therapeutic strategies: pediatric autoinflammatory disease-a multi-faceted approach to fever of unknown origin of childhood.","authors":"Akihiro Yachie","doi":"10.1186/s41232-022-00204-y","DOIUrl":"https://doi.org/10.1186/s41232-022-00204-y","url":null,"abstract":"<p><p>Among the different etiologies for fever of unknown origin in children, infectious diseases are the most frequent final diagnosis, followed by autoimmune diseases and malignancies. Autoinflammatory diseases are relatively rare among children and are frequently overlooked as differential diagnoses for fever of unknown origin. Once the possibility of a particular autoimmune disease is considered by physicians, the diagnosis might be easily made by a genetic approach because many of autoinflammatory diseases are of monogenic origin. To reach the diagnosis, detailed history-taking, precise physical examinations, and cytokine profiling as well as extensive mutation analysis of candidate genes should be undertaken for febrile children. Such the approach will protect the patients, and their family to undergo \"diagnostic odyssey\" in which unnecessary and sometimes risky diagnostic and therapeutic interventions are taken.This short review discusses the clinical and laboratory features of familial Mediterranean fever and systemic juvenile idiopathic arthritis, as representative illnesses of monogenic and polygenic autoinflammatory diseases, respectively. Cytokine profiling and mutation analyses both help to understand and decipher the heterogeneous pathologies in both disease categories.</p>","PeriodicalId":13588,"journal":{"name":"Inflammation and Regeneration","volume":" ","pages":"21"},"PeriodicalIF":8.1,"publicationDate":"2022-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9250222/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40472203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}