{"title":"Transition of clinical and basic studies on liver cirrhosis treatment using cells to seek the best treatment.","authors":"Shuji Terai, Atsunori Tsuchiya, Yusuke Watanabe, Suguru Takeuchi","doi":"10.1186/s41232-021-00178-3","DOIUrl":"https://doi.org/10.1186/s41232-021-00178-3","url":null,"abstract":"<p><p>The liver is a highly regenerative organ; however, its regeneration potential is reduced by chronic inflammation with fibrosis accumulation, leading to cirrhosis. With an aim to tackle liver cirrhosis, a life-threatening disease, trials of autologous bone marrow cell infusion (ABMi) therapy started in 2003. Clinical studies revealed that ABMi attenuated liver fibrosis and improved liver function in some patients; however, this therapy has some limitations such as the need of general anesthesia. Following ABMi therapy, studies have focused on specific cells such as mesenchymal stromal cells (MSCs) from a variety of tissues such as bone marrow, adipose tissue, and umbilical cord tissues. Particularly, studies have focused on gaining mechanistic insights into MSC distribution and effects on immune cells, especially macrophages. Several basic studies have reported the use of MSCs for liver cirrhosis models, while a number of clinical studies have used autologous and allogeneic MSCs; however, there are only a few reports on the obvious substantial effect of MSCs in clinical studies. Since then, studies have analyzed and identified the important signals or components in MSCs that regulate immune cells, such as macrophages, under cirrhotic conditions and have revealed that MSC-derived exosomes are key regulators. Researchers are still seeking the best approach and filling the gap between basic and clinical studies to treat liver cirrhosis. This paper highlights the timeline of basic and clinical studies analyzing ABMi and MSC therapies for cirrhosis and the scope for future studies and therapy.</p>","PeriodicalId":13588,"journal":{"name":"Inflammation and Regeneration","volume":"41 1","pages":"27"},"PeriodicalIF":8.1,"publicationDate":"2021-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8444392/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39443413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Calcineurin-nuclear factor for activated T cells (NFAT) signaling in pathophysiology of wound healing.","authors":"Takahiro Manabe, Heamin Park, Takashi Minami","doi":"10.1186/s41232-021-00176-5","DOIUrl":"https://doi.org/10.1186/s41232-021-00176-5","url":null,"abstract":"<p><p>Wound healing occurred with serial coordinated processes via coagulation-fibrinolysis, inflammation following to immune-activation, angiogenesis, granulation, and the final re-epithelization. Since the dermis forms critical physical and biological barriers, the repair system should be rapidly and accurately functioned to keep homeostasis in our body. The wound healing is impaired or dysregulated via an inappropriate microenvironment, which is easy to lead to several diseases, including fibrosis in multiple organs and psoriasis. Such a disease led to the dysregulation of several types of cells: immune cells, fibroblasts, mural cells, and endothelial cells. Moreover, recent progress in medical studies uncovers the significant concept. The calcium signaling, typically the following calcineurin-NFAT signaling, essentially regulates not only immune cell activations, but also various healing steps via coagulation, inflammation, and angiogenesis. In this review, we summarize the role of the NFAT activation pathway in wound healing and discuss its overall impact on future therapeutic ways.</p>","PeriodicalId":13588,"journal":{"name":"Inflammation and Regeneration","volume":"41 1","pages":"26"},"PeriodicalIF":8.1,"publicationDate":"2021-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8371293/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39335997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The role of lymphatics in intestinal inflammation.","authors":"Ryota Hokari, Akira Tomioka","doi":"10.1186/s41232-021-00175-6","DOIUrl":"https://doi.org/10.1186/s41232-021-00175-6","url":null,"abstract":"<p><p>The lymphatic vasculature returns filtered interstitial arterial fluid and tissue metabolites to the blood circulation. It also plays a major role in lipid absorption and immune cell trafficking. Lymphatic vascular defects have been revealed in inflammatory diseases, Crohn's disease, obesity, cardiovascular disease, hypertension, atherosclerosis, and Alzheimer's disease. In this review, we discuss lymphatic structure and function within the gut, such as dietary lipid absorption, the transport of antigens and immune cells to lymph nodes, peripheral tolerance, and lymphocyte migration from secondary lymphoid tissues to the lymphatics and the immune systems. We also discuss the potential roles of these lymphatics on the pathophysiology of inflammatory bowel disease and as new targets for therapeutic management.</p>","PeriodicalId":13588,"journal":{"name":"Inflammation and Regeneration","volume":"41 1","pages":"25"},"PeriodicalIF":8.1,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8371859/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39320267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multi-omics approach to precision medicine for immune-mediated diseases.","authors":"Mineto Ota, Keishi Fujio","doi":"10.1186/s41232-021-00173-8","DOIUrl":"https://doi.org/10.1186/s41232-021-00173-8","url":null,"abstract":"<p><p>Recent innovation in high-throughput sequencing technologies has drastically empowered the scientific research. Consequently, now, it is possible to capture comprehensive profiles of samples at multiple levels including genome, epigenome, and transcriptome at a time. Applying these kinds of rich information to clinical settings is of great social significance. For some traits such as cardiovascular diseases, attempts to apply omics datasets in clinical practice for the prediction of the disease risk have already shown promising results, although still under way for immune-mediated diseases. Multiple studies have tried to predict treatment response in immune-mediated diseases using genomic, transcriptomic, or clinical information, showing various possible indicators. For better prediction of treatment response or disease outcome in immune-mediated diseases, combining multi-layer information together may increase the power. In addition, in order to efficiently pick up meaningful information from the massive data, high-quality annotation of genomic functions is also crucial. In this review, we discuss the achievement so far and the future direction of multi-omics approach to immune-mediated diseases.</p>","PeriodicalId":13588,"journal":{"name":"Inflammation and Regeneration","volume":"41 1","pages":"23"},"PeriodicalIF":8.1,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s41232-021-00173-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39262836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction to: Renal complications in coronavirus disease 2019: a systematic review.","authors":"Taichiro Minami, Yasunori Iwata, Takashi Wada","doi":"10.1186/s41232-021-00171-w","DOIUrl":"https://doi.org/10.1186/s41232-021-00171-w","url":null,"abstract":"","PeriodicalId":13588,"journal":{"name":"Inflammation and Regeneration","volume":"41 1","pages":"24"},"PeriodicalIF":8.1,"publicationDate":"2021-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s41232-021-00171-w","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39215893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Single-cell and spatial analyses of cancer cells: toward elucidating the molecular mechanisms of clonal evolution and drug resistance acquisition.","authors":"Satoi Nagasawa, Yukie Kashima, Ayako Suzuki, Yutaka Suzuki","doi":"10.1186/s41232-021-00170-x","DOIUrl":"https://doi.org/10.1186/s41232-021-00170-x","url":null,"abstract":"<p><p>Even within a single type of cancer, cells of various types exist and play interrelated roles. Each of the individual cells resides in a distinct microenvironment and behaves differently. Such heterogeneity is the most cumbersome nature of cancers, which is occasionally uncountable when effective prevention or total elimination of cancers is attempted. To understand the heterogeneous nature of each cell, the use of conventional methods for the analysis of \"bulk\" cells is insufficient. Although some methods are high-throughput and compressive regarding the genes being detected, the obtained data would be from the cell mass, and the average of a large number of the component cells would no longer be measured. Single-cell analysis, which has developed rapidly in recent years, is causing a drastic change. Genome, transcriptome, and epigenome analyses at single-cell resolution currently target cancer cells, cancer-associated fibroblasts, endothelial cells of vessels, and circulating and infiltrating immune cells. In fact, surprisingly diverse features of clonal evolution of cancer cells, during the development of cancer or acquisition of drug resistance, accompanied by corresponding gene expression changes in the circumstantial stromal cells, appeared in recent single-cell analyses. Based on the obtained novel insights, better optimal drug selection and new drug administration sequences were started. Even a remaining concern of the single cell analyses is being addressed. Until very recently, it was impossible to obtain positional information of cells in cancer via single-cell analysis because such information is lost during preparation of single-cell suspensions. A new method, collectively called spatial transcriptome (ST) analysis, has been developed and rapidly applied to various clinical specimens. In this review, we first outline the recent achievements of single-cell cancer analysis in analyzing the molecular basis underlying the acquisition of drug resistance, particularly focusing on the latest anti-epidermal growth factor receptor tyrosine kinase inhibitor, osimertinib. Further, we review the currently available ST analysis methods and introduce our recent attempts regarding the respective topics.</p>","PeriodicalId":13588,"journal":{"name":"Inflammation and Regeneration","volume":"41 1","pages":"22"},"PeriodicalIF":8.1,"publicationDate":"2021-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s41232-021-00170-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39192000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pathogenesis and management of gastrointestinal inflammation and fibrosis: from inflammatory bowel diseases to endoscopic surgery.","authors":"Kentaro Iwata, Yohei Mikami, Motohiko Kato, Naohisa Yahagi, Takanori Kanai","doi":"10.1186/s41232-021-00174-7","DOIUrl":"https://doi.org/10.1186/s41232-021-00174-7","url":null,"abstract":"<p><p>Gastrointestinal fibrosis is a state of accumulated biological entropy caused by a dysregulated tissue repair response. Acute or chronic inflammation in the gastrointestinal tract, including inflammatory bowel disease, particularly Crohn's disease, induces fibrosis and strictures, which often require surgical or endoscopic intervention. Recent technical advances in endoscopic surgical techniques raise the possibility of gastrointestinal stricture after an extended resection. Compared to recent progress in controlling inflammation, our understanding of the pathogenesis of gastrointestinal fibrosis is limited, which requires the development of prevention and treatment strategies. Here, we focus on gastrointestinal fibrosis in Crohn's disease and post-endoscopic submucosal dissection (ESD) stricture, and we review the relevant literature.</p>","PeriodicalId":13588,"journal":{"name":"Inflammation and Regeneration","volume":"41 1","pages":"21"},"PeriodicalIF":8.1,"publicationDate":"2021-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8278771/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39184017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multiomic technologies for analyses of inborn errors of immunity: from snapshot of the average cell to dynamic temporal picture at single-cell resolution.","authors":"Yusuke Kawashima, Ryuta Nishikomori, Osamu Ohara","doi":"10.1186/s41232-021-00169-4","DOIUrl":"10.1186/s41232-021-00169-4","url":null,"abstract":"<p><p>Advances in DNA sequencing technology have significantly impacted human genetics; they have enabled the analysis of genetic causes of rare diseases, which are usually pathogenic variants in a single gene at the nucleotide sequence level. However, since the quantity of data regarding the relationship between genotype and phenotype is insufficient to diagnose some rare immune diseases definitively, genetic information alone cannot help obtain a mechanistic understanding of the disease etiology. For such cases, exploring the molecular phenotype using multiomic analyses could be the approach of choice. In this review, we first overview current technologies for multiomic analysis, particularly focusing on RNA and protein profiling of bulk cell ensembles. We then discuss the measurement modality and granularity issue because it is critical to design multiomic experiments properly. Next, we illustrate the importance of bioimaging by describing our experience with the analysis of an autoinflammatory disease, cryopyrin-associated periodic fever syndrome, which could be caused by low-frequency somatic mosaicism and cannot be well characterized only by multiomic snapshot analyses of an ensemble of many immune cells. We found it powerful to complement the multiomic data with bioimaging data that can provide us with indispensable time-specific dynamic information of every single cell in the \"immune cell society.\" Because we now have many measurement tools in different modalities and granularity to tackle the etiology of rare hereditary immune diseases, we might gain a deeper understanding of the pathogenic mechanisms of these diseases by taking full advantage of these tools in an integrated manner.</p>","PeriodicalId":13588,"journal":{"name":"Inflammation and Regeneration","volume":"41 1","pages":"19"},"PeriodicalIF":8.1,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8247241/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39044219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cardiac regeneration by direct reprogramming in this decade and beyond.","authors":"Hiroyuki Yamakawa, Masaki Ieda","doi":"10.1186/s41232-021-00168-5","DOIUrl":"https://doi.org/10.1186/s41232-021-00168-5","url":null,"abstract":"<p><p>Japan faces an increasing incidence of heart disease, owing to a shift towards a westernized lifestyle and an aging demographic. In cases where conventional interventions are not appropriate, regenerative medicine offers a promising therapeutic option. However, the use of stem cells has limitations, and therefore, \"direct cardiac reprogramming\" is emerging as an alternative treatment. Myocardial regeneration transdifferentiates cardiac fibroblasts into cardiomyocytes in situ.Three cardiogenic transcription factors: Gata4, Mef2c, and Tbx5 (GMT) can induce direct reprogramming of fibroblasts into induced cardiomyocytes (iCMs), in mice. However, in humans, additional factors, such as Mesp1 and Myocd, are required. Inflammation and immune responses hinder the reprogramming process in mice, and epigenetic modifiers such as TET1 are involved in direct cardiac reprogramming in humans. The three main approaches to improving reprogramming efficiency are (1) improving direct cardiac reprogramming factors, (2) improving cell culture conditions, and (3) regulating epigenetic factors. miR-133 is a potential candidate for the first approach. For the second approach, inhibitors of TGF-β and Wnt signals, Akt1 overexpression, Notch signaling pathway inhibitors, such as DAPT ((S)-tert-butyl 2-((S)-2-(2-(3,5-difluorophenyl) acetamido) propanamido)-2-phenylacetate), fibroblast growth factor (FGF)-2, FGF-10, and vascular endothelial growth factor (VEGF: FFV) can influence reprogramming. Reducing the expression of Bmi1, which regulates the mono-ubiquitination of histone H2A, alters histone modification, and subsequently the reprogramming efficiency, in the third approach. In addition, diclofenac, a non-steroidal anti-inflammatory drug, and high level of Mef2c overexpression could improve direct cardiac reprogramming.Direct cardiac reprogramming needs improvement if it is to be used in humans, and the molecular mechanisms involved remain largely elusive. Further advances in cardiac reprogramming research are needed to bring us closer to cardiac regenerative therapy.</p>","PeriodicalId":13588,"journal":{"name":"Inflammation and Regeneration","volume":"41 1","pages":"20"},"PeriodicalIF":8.1,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8247073/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39044220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}