Inflammation and Regeneration最新文献

筛选
英文 中文
CX3CL1-CX3CR1 axis protects retinal ganglion cells by inhibiting microglia activation in a distal optic nerve trauma model 在视神经远端创伤模型中,CX3CL1-CX3CR1 轴通过抑制小胶质细胞的激活保护视网膜神经节细胞
IF 8.1 3区 医学
Inflammation and Regeneration Pub Date : 2024-06-06 DOI: 10.1186/s41232-024-00343-4
Huan Yu, Bingqiao Shen, Ruiqi Han, Yang Zhang, Shushu Xu, Yumeng Zhang, Yanzhi Guo, Ping Huang, Shouyue Huang, Yisheng Zhong
{"title":"CX3CL1-CX3CR1 axis protects retinal ganglion cells by inhibiting microglia activation in a distal optic nerve trauma model","authors":"Huan Yu, Bingqiao Shen, Ruiqi Han, Yang Zhang, Shushu Xu, Yumeng Zhang, Yanzhi Guo, Ping Huang, Shouyue Huang, Yisheng Zhong","doi":"10.1186/s41232-024-00343-4","DOIUrl":"https://doi.org/10.1186/s41232-024-00343-4","url":null,"abstract":"","PeriodicalId":13588,"journal":{"name":"Inflammation and Regeneration","volume":null,"pages":null},"PeriodicalIF":8.1,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141265131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emilin2 marks the target region for mesenchymal cell accumulation in bone regeneration Emilin2 标志着骨再生过程中间质细胞聚集的目标区域
IF 8.1 3区 医学
Inflammation and Regeneration Pub Date : 2024-06-03 DOI: 10.1186/s41232-024-00341-6
Yifan Qing, T. Ono, Y. Kohara, Atsushi Watanabe, Noboru Ogiso, Masako Ito, Tomoki Nakashima, Sunao Takeshita
{"title":"Emilin2 marks the target region for mesenchymal cell accumulation in bone regeneration","authors":"Yifan Qing, T. Ono, Y. Kohara, Atsushi Watanabe, Noboru Ogiso, Masako Ito, Tomoki Nakashima, Sunao Takeshita","doi":"10.1186/s41232-024-00341-6","DOIUrl":"https://doi.org/10.1186/s41232-024-00341-6","url":null,"abstract":"","PeriodicalId":13588,"journal":{"name":"Inflammation and Regeneration","volume":null,"pages":null},"PeriodicalIF":8.1,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141228499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of cellular senescence in inflammation and regeneration 细胞衰老在炎症和再生中的作用
IF 8.1 3区 医学
Inflammation and Regeneration Pub Date : 2024-06-03 DOI: 10.1186/s41232-024-00342-5
Yuki Saito, Sena Yamamoto, Takako S. Chikenji
{"title":"Role of cellular senescence in inflammation and regeneration","authors":"Yuki Saito, Sena Yamamoto, Takako S. Chikenji","doi":"10.1186/s41232-024-00342-5","DOIUrl":"https://doi.org/10.1186/s41232-024-00342-5","url":null,"abstract":"","PeriodicalId":13588,"journal":{"name":"Inflammation and Regeneration","volume":null,"pages":null},"PeriodicalIF":8.1,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141228523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Th22 is the effector cell of thymosin β15-induced hair regeneration in mice Th22 是胸腺肽 β15 诱导小鼠毛发再生的效应细胞
IF 8.1 3区 医学
Inflammation and Regeneration Pub Date : 2024-01-08 DOI: 10.1186/s41232-023-00316-z
Nana Tao, Yuyuan Ying, Xie Xu, Qingru Sun, Yaoying Shu, Shiyu Hu, Zhaohuan Lou, Jianli Gao
{"title":"Th22 is the effector cell of thymosin β15-induced hair regeneration in mice","authors":"Nana Tao, Yuyuan Ying, Xie Xu, Qingru Sun, Yaoying Shu, Shiyu Hu, Zhaohuan Lou, Jianli Gao","doi":"10.1186/s41232-023-00316-z","DOIUrl":"https://doi.org/10.1186/s41232-023-00316-z","url":null,"abstract":"","PeriodicalId":13588,"journal":{"name":"Inflammation and Regeneration","volume":null,"pages":null},"PeriodicalIF":8.1,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139379897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The gut-liver axis in hepatobiliary diseases 肝胆疾病中的肠肝轴
IF 8.1 3区 医学
Inflammation and Regeneration Pub Date : 2024-01-08 DOI: 10.1186/s41232-023-00315-0
Masataka Ichikawa, Haruka Okada, N. Nakamoto, N. Taniki, Po-sung Chu, Takanori Kanai
{"title":"The gut-liver axis in hepatobiliary diseases","authors":"Masataka Ichikawa, Haruka Okada, N. Nakamoto, N. Taniki, Po-sung Chu, Takanori Kanai","doi":"10.1186/s41232-023-00315-0","DOIUrl":"https://doi.org/10.1186/s41232-023-00315-0","url":null,"abstract":"","PeriodicalId":13588,"journal":{"name":"Inflammation and Regeneration","volume":null,"pages":null},"PeriodicalIF":8.1,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139380071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling dynamic interactions: in vivo imaging chronicles inflammation and regeneration in living organisms 揭示动态相互作用:活体成像记录生物体的炎症和再生过程
IF 8.1 3区 医学
Inflammation and Regeneration Pub Date : 2023-12-01 DOI: 10.1186/s41232-023-00312-3
K. Kabashima
{"title":"Unveiling dynamic interactions: in vivo imaging chronicles inflammation and regeneration in living organisms","authors":"K. Kabashima","doi":"10.1186/s41232-023-00312-3","DOIUrl":"https://doi.org/10.1186/s41232-023-00312-3","url":null,"abstract":"","PeriodicalId":13588,"journal":{"name":"Inflammation and Regeneration","volume":null,"pages":null},"PeriodicalIF":8.1,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138608104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inter-organ communication involved in metabolic regulation at the whole-body level 全身代谢调节所涉及的器官间交流
IF 8.1 3区 医学
Inflammation and Regeneration Pub Date : 2023-12-01 DOI: 10.1186/s41232-023-00306-1
Hideki Katagiri
{"title":"Inter-organ communication involved in metabolic regulation at the whole-body level","authors":"Hideki Katagiri","doi":"10.1186/s41232-023-00306-1","DOIUrl":"https://doi.org/10.1186/s41232-023-00306-1","url":null,"abstract":"","PeriodicalId":13588,"journal":{"name":"Inflammation and Regeneration","volume":null,"pages":null},"PeriodicalIF":8.1,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138611130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A disease-specific iPS cell resource for studying rare and intractable diseases. 一种用于研究罕见和难治性疾病的疾病特异性iPS细胞资源。
IF 8.1 3区 医学
Inflammation and Regeneration Pub Date : 2023-09-08 DOI: 10.1186/s41232-023-00294-2
Megumu K Saito, Mitsujiro Osawa, Nao Tsuchida, Kotaro Shiraishi, Akira Niwa, Knut Woltjen, Isao Asaka, Katsuhisa Ogata, Suminobu Ito, Shuzo Kobayashi, Shinya Yamanaka
{"title":"A disease-specific iPS cell resource for studying rare and intractable diseases.","authors":"Megumu K Saito, Mitsujiro Osawa, Nao Tsuchida, Kotaro Shiraishi, Akira Niwa, Knut Woltjen, Isao Asaka, Katsuhisa Ogata, Suminobu Ito, Shuzo Kobayashi, Shinya Yamanaka","doi":"10.1186/s41232-023-00294-2","DOIUrl":"10.1186/s41232-023-00294-2","url":null,"abstract":"<p><strong>Background: </strong>Disease-specific induced pluripotent stem cells (iPSCs) are useful tools for pathological analysis and diagnosis of rare diseases. Given the limited available resources, banking such disease-derived iPSCs and promoting their widespread use would be a promising approach for untangling the mysteries of rare diseases. Herein, we comprehensively established iPSCs from patients with designated intractable diseases in Japan and evaluated their properties to enrich rare disease iPSC resources.</p><p><strong>Methods: </strong>Patients with designated intractable diseases were recruited for the study and blood samples were collected after written informed consent was obtained from the patients or their guardians. From the obtained samples, iPSCs were established using the episomal method. The established iPSCs were deposited in a cell bank.</p><p><strong>Results: </strong>We established 1,532 iPSC clones from 259 patients with 139 designated intractable diseases. The efficiency of iPSC establishment did not vary based on age and sex. Most iPSC clones originated from non-T and non-B hematopoietic cells. All iPSC clones expressed key transcription factors, OCT3/4 (range 0.27-1.51; mean 0.79) and NANOG (range 0.15-3.03; mean 1.00), relative to the reference 201B7 iPSC clone.</p><p><strong>Conclusions: </strong>These newly established iPSCs are readily available to the researchers and can prove to be a useful resource for research on rare intractable diseases.</p>","PeriodicalId":13588,"journal":{"name":"Inflammation and Regeneration","volume":null,"pages":null},"PeriodicalIF":8.1,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10485998/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10549517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Jdp2 is a spatiotemporal transcriptional activator of the AhR via the Nrf2 gene battery. jp2是通过Nrf2基因电池激活AhR的时空转录激活因子。
IF 8.1 3区 医学
Inflammation and Regeneration Pub Date : 2023-08-18 DOI: 10.1186/s41232-023-00290-6
Kenly Wuputra, Ming-Ho Tsai, Kohsuke Kato, Chia-Chen Ku, Jia-Bin Pan, Ya-Han Yang, Shigeo Saito, Chun-Chieh Wu, Ying-Chu Lin, Kuang-Hung Cheng, Kung-Kai Kuo, Michiya Noguchi, Yukio Nakamura, Tohru Yoshioka, Deng-Chyang Wu, Chang-Shen Lin, Kazunari K Yokoyama
{"title":"Jdp2 is a spatiotemporal transcriptional activator of the AhR via the Nrf2 gene battery.","authors":"Kenly Wuputra, Ming-Ho Tsai, Kohsuke Kato, Chia-Chen Ku, Jia-Bin Pan, Ya-Han Yang, Shigeo Saito, Chun-Chieh Wu, Ying-Chu Lin, Kuang-Hung Cheng, Kung-Kai Kuo, Michiya Noguchi, Yukio Nakamura, Tohru Yoshioka, Deng-Chyang Wu, Chang-Shen Lin, Kazunari K Yokoyama","doi":"10.1186/s41232-023-00290-6","DOIUrl":"10.1186/s41232-023-00290-6","url":null,"abstract":"<p><strong>Background: </strong>Crosstalk between the aryl hydrocarbon receptor (AhR) and nuclear factor (erythroid-derived 2)-like 2 (Nrf2) signaling is called the \"AhR-Nrf2 gene battery\", which works synergistically in detoxification to support cell survival. Nrf2-dependent phase II gene promoters are controlled by coordinated recruitment of the AhR to adjacent dioxin responsive element (DRE) and Nrf2 recruitment to the antioxidative response element (ARE). The molecular interaction between AhR and Nrf2 members, and the regulation of each target, including phase I and II gene complexes, and their mediators are poorly understood.</p><p><strong>Methods: </strong>Knockdown and forced expression of AhR-Nrf2 battery members were used to examine the molecular interactions between the AhR-Nrf2 axis and AhR promoter activation. Sequential immunoprecipitation, chromatin immunoprecipitation, and histology were used to identify each protein complex recruited to their respective cis-elements in the AhR promoter. Actin fiber distribution, cell spreading, and invasion were examined to identify functional differences in the AhR-Jdp2 axis between wild-type and Jdp2 knockout cells. The possible tumorigenic role of Jdp2 in the AhR-Nrf2 axis was examined in mutant Kras-Trp53-driven pancreatic tumors.</p><p><strong>Results: </strong>Crosstalk between AhR and Nrf2 was evident at the transcriptional level. The AhR promoter was activated by phase I ligands such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) through the AhR-Jdp2-Nrf2 axis in a time- and spatial transcription-dependent manner. Jdp2 was a bifunctional activator of DRE- and ARE-mediated transcription in response to TCDD. After TCDD exposure, Jdp2 activated the AhR promoter at the DRE and then moved to the ARE where it activated the promoter to increase reactive oxygen species (ROS)-mediated functions such as cell spreading and invasion in normal cells, and cancer regression in mutant Kras-Trp53-driven pancreatic tumor cells.</p><p><strong>Conclusions: </strong>Jdp2 plays a critical role in AhR promoter activation through the AhR-Jdp2-Nrf2 axis in a spatiotemporal manner. The AhR functions to maintain ROS balance and cell spreading, invasion, and cancer regression in a mouse model of mutant Kras-Trp53 pancreatic cancer. These findings provide new insights into the roles of Jdp2 in the homeostatic regulation of oxidative stress and in the antioxidation response in detoxification, inflammation, and cancer progression.</p>","PeriodicalId":13588,"journal":{"name":"Inflammation and Regeneration","volume":null,"pages":null},"PeriodicalIF":8.1,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10436584/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10047564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Sox17 downstream gene Rasip1 is involved in the hematopoietic activity of intra-aortic hematopoietic clusters in the midgestation mouse embryo. Sox17下游基因Rasip1参与妊娠中期小鼠胚胎主动脉内造血簇的造血活性。
IF 8.1 3区 医学
Inflammation and Regeneration Pub Date : 2023-08-08 DOI: 10.1186/s41232-023-00292-4
Gerel Melig, Ikuo Nobuhisa, Kiyoka Saito, Ryota Tsukahara, Ayumi Itabashi, Yoshiakira Kanai, Masami Kanai-Azuma, Mitsujiro Osawa, Motohiko Oshima, Atsushi Iwama, Tetsuya Taga
{"title":"A Sox17 downstream gene Rasip1 is involved in the hematopoietic activity of intra-aortic hematopoietic clusters in the midgestation mouse embryo.","authors":"Gerel Melig, Ikuo Nobuhisa, Kiyoka Saito, Ryota Tsukahara, Ayumi Itabashi, Yoshiakira Kanai, Masami Kanai-Azuma, Mitsujiro Osawa, Motohiko Oshima, Atsushi Iwama, Tetsuya Taga","doi":"10.1186/s41232-023-00292-4","DOIUrl":"10.1186/s41232-023-00292-4","url":null,"abstract":"<p><strong>Background: </strong>During mouse embryonic development, definitive hematopoiesis is first detected around embryonic day (E) 10.5 in the aorta-gonad-mesonephros (AGM) region. Hematopoietic stem cells (HSCs) arise in the dorsal aorta's intra-aortic hematopoietic cell clusters (IAHCs). We have previously reported that a transcription factor Sox17 is expressed in IAHCs, and that, among them, CD45<sup>low</sup>c-Kit<sup>high</sup> cells have high hematopoietic activity. Furthermore, forced expression of Sox17 in this population of cells can maintain the formation of hematopoietic cell clusters. However, how Sox17 does so, particularly downstream signaling involved, remains poorly understood. The purpose of this study is to search for new Sox17 targets which contribute to cluster formation with hematopoietic activity.</p><p><strong>Methods: </strong>RNA-sequencing (RNA-seq) analysis was done to identify genes that are upregulated in Sox17-expressing IAHCs as compared with Sox17-negative ones. Among the top 7 highly expressed genes, Rasip1 which had been reported to be a vascular-specific regulator was focused on in this study, and firstly, the whole-mount immunostaining was done. We conducted luciferase reporter assay and chromatin immunoprecipitation (ChIP) assay to examine whether Sox17 regulates Rasip1 gene expression via binding to its enhancer element. We also analyzed the cluster formation and the multilineage colony-forming ability of Rasip1-transduced cells and Rasip1-knockdown Sox17-transduced cells.</p><p><strong>Results: </strong>The increase of the Rasip1 expression level was observed in Sox17-positive CD45<sup>low</sup>c-Kit<sup>high</sup> cells as compared with the Sox17-nonexpressing control. Also, the expression level of the Rasip1 gene was increased by the Sox17-nuclear translocation. Rasip1 was expressed on the membrane of IAHCs, overlapping with the endothelial cell marker, CD31, and hematopoietic stem/progenitor marker (HSPC), c-Kit. Rasip1 expression was observed in most part of c-Kit<sup>+</sup>Sox17<sup>+</sup> cells in IAHCs. Luciferase reporter assay and ChIP assay indicated that one of the five putative Sox17-binding sites in the Rasip1 enhancer region was important for Rasip1 expression via Sox17 binding. Rasip1 knockdown in Sox17-transduced cells decreased the cluster formation and diminished the colony-forming ability, while overexpression of Rasip1 in CD45<sup>low</sup>c-Kit<sup>high</sup> cells led to a significant but transient increase in hematopoietic activity.</p><p><strong>Conclusions: </strong>Rasip1 knockdown in Sox17-transduced CD45<sup>low</sup>c-Kit<sup>high</sup> cells displayed a significant decrease in the multilineage colony-forming ability and the cluster size. Rasip1 overexpression in Sox17-untransduced CD45<sup>low</sup>c-Kit<sup>high</sup> cells led to a significant but transient increase in the multilineage colony-forming ability, suggesting the presence of a cooperating factor for sustained","PeriodicalId":13588,"journal":{"name":"Inflammation and Regeneration","volume":null,"pages":null},"PeriodicalIF":8.1,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10408172/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10319225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信