Fractional Differential Calculus最新文献

筛选
英文 中文
Existence results for a Caputo-Hadamard type fractional boundary value problem 一类Caputo-Hadamard型分数边值问题的存在性结果
Fractional Differential Calculus Pub Date : 1900-01-01 DOI: 10.7153/fdc-2021-11-16
A. Ardjouni
{"title":"Existence results for a Caputo-Hadamard type fractional boundary value problem","authors":"A. Ardjouni","doi":"10.7153/fdc-2021-11-16","DOIUrl":"https://doi.org/10.7153/fdc-2021-11-16","url":null,"abstract":"","PeriodicalId":135809,"journal":{"name":"Fractional Differential Calculus","volume":"66 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129702164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fractional resolvent operator with α ∈ (0,1) and applications α∈(0,1)的分数分解算子及其应用
Fractional Differential Calculus Pub Date : 1900-01-01 DOI: 10.7153/fdc-2019-09-13
J. P. C. D. Santos
{"title":"Fractional resolvent operator with α ∈ (0,1) and applications","authors":"J. P. C. D. Santos","doi":"10.7153/fdc-2019-09-13","DOIUrl":"https://doi.org/10.7153/fdc-2019-09-13","url":null,"abstract":". In this paper we study an analytic resolvent family for abstract fractional integro- differential system using the perturbation theory of sectorial operators. We apply this resolvent family on the existence of mild solutions for abstract semilinear Cauchy problem where D α t u represents the Caputo derivative of u for α ∈ ( 0 , 1 ) , A , ( B ( t )) t (cid:2) 0 are closed linear operators de fi ned on a common domain which is dense in a Banach space X and f satis fi es appropriated conditions. In the end, we applain the ours abstract results in the existence of mild solution of two partial integro-differential systems.","PeriodicalId":135809,"journal":{"name":"Fractional Differential Calculus","volume":"34 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115814371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Fractional inequalities for exponentially generalized (m,ω,h_1,h_2)-preinvex functions with applications 指数广义(m,ω,h_1,h_2)-前倒凸函数的分数不等式及其应用
Fractional Differential Calculus Pub Date : 1900-01-01 DOI: 10.7153/fdc-2020-10-05
A. Kashuri, M. Kunt
{"title":"Fractional inequalities for exponentially generalized (m,ω,h_1,h_2)-preinvex functions with applications","authors":"A. Kashuri, M. Kunt","doi":"10.7153/fdc-2020-10-05","DOIUrl":"https://doi.org/10.7153/fdc-2020-10-05","url":null,"abstract":". The aim of this paper is to introduce a new extension of preinvexity called expo- nentially generalized ( m , ω , h 1 , h 2 ) –preinvexity. Some new integral inequalities of Hermite– Hadamard type for exponentially generalized ( m , ω , h 1 , h 2 ) –preinvex functions via Riemann– Liouville fractional integral are established. We show that the class of exponentially generalized ( m , ω , h 1 , h 2 ) –preinvex functions includes several other classes of preinvex functions. At the end, some new error estimates for trapezoidal quadrature formula are provided as well. This results may stimulate further research in different areas of pure and applied sciences.","PeriodicalId":135809,"journal":{"name":"Fractional Differential Calculus","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131297201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integral inequalities within the framework of generalized fractional integrals 广义分数阶积分框架内的积分不等式
Fractional Differential Calculus Pub Date : 1900-01-01 DOI: 10.7153/fdc-2021-11-05
Paulo M. Guzman, J. E. Valdés, Y. Gasimov
{"title":"Integral inequalities within the framework of generalized fractional integrals","authors":"Paulo M. Guzman, J. E. Valdés, Y. Gasimov","doi":"10.7153/fdc-2021-11-05","DOIUrl":"https://doi.org/10.7153/fdc-2021-11-05","url":null,"abstract":"","PeriodicalId":135809,"journal":{"name":"Fractional Differential Calculus","volume":"64 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115330184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
On nonlinear Volterra-Fredholm type discrete fractional sum inequalities 非线性Volterra-Fredholm型离散分数阶和不等式
Fractional Differential Calculus Pub Date : 1900-01-01 DOI: 10.7153/fdc-2021-11-02
S. Kendre, N. Kale
{"title":"On nonlinear Volterra-Fredholm type discrete fractional sum inequalities","authors":"S. Kendre, N. Kale","doi":"10.7153/fdc-2021-11-02","DOIUrl":"https://doi.org/10.7153/fdc-2021-11-02","url":null,"abstract":"","PeriodicalId":135809,"journal":{"name":"Fractional Differential Calculus","volume":"47 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116814554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Positive solutions of m-point fractional boundary value problem on the half line 半线上m点分数边值问题的正解
Fractional Differential Calculus Pub Date : 1900-01-01 DOI: 10.7153/fdc-2019-09-14
D. Oz, I. Karaca
{"title":"Positive solutions of m-point fractional boundary value problem on the half line","authors":"D. Oz, I. Karaca","doi":"10.7153/fdc-2019-09-14","DOIUrl":"https://doi.org/10.7153/fdc-2019-09-14","url":null,"abstract":"In this paper, six functionals fixed point theorem is used to investigate the existence of positive solutions for fractional-order nonlinear boundary value problems on the half line. As an application, an example is given to illustrate the main result. Mathematics subject classification (2010): 26A33, 34A08, 34B15, 34B18, 47H10.","PeriodicalId":135809,"journal":{"name":"Fractional Differential Calculus","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122915161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Existence of positive solutions for regular fractional Sturm-Liouville problems 正则分数阶Sturm-Liouville问题正解的存在性
Fractional Differential Calculus Pub Date : 1900-01-01 DOI: 10.7153/fdc-2019-09-18
Tahereh Haghi, K. Ghanbari, A. Mingarelli
{"title":"Existence of positive solutions for regular fractional Sturm-Liouville problems","authors":"Tahereh Haghi, K. Ghanbari, A. Mingarelli","doi":"10.7153/fdc-2019-09-18","DOIUrl":"https://doi.org/10.7153/fdc-2019-09-18","url":null,"abstract":". In this article we investigate existence and nonexistence results for some regular frac- tional Sturm-Liouville problems. We fi nd the eigenvalues intervals of this problem may or may not have a positive solution. Some suf fi cient conditions for existence and nonexistence of posi- tive solutions are given. Further, we study some special properties of positive solutions. We give some examples at the end.","PeriodicalId":135809,"journal":{"name":"Fractional Differential Calculus","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127801239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Boundary value problems for fractional differential inclusions in Banach spaces Banach空间中分数阶微分包含的边值问题
Fractional Differential Calculus Pub Date : 1900-01-01 DOI: 10.7153/FDC-02-07
M. Benchohra, J. Henderson, D. Seba
{"title":"Boundary value problems for fractional differential inclusions in Banach spaces","authors":"M. Benchohra, J. Henderson, D. Seba","doi":"10.7153/FDC-02-07","DOIUrl":"https://doi.org/10.7153/FDC-02-07","url":null,"abstract":"This paper is concerned with the existence ofsolutions of nonlinear fractional differen- tial inclusions with boundary conditions in a Banach space. The main result is obtained by using the set-valued analog of Monch fixed point theorem combined with the Kuratowski measure of noncompactness.","PeriodicalId":135809,"journal":{"name":"Fractional Differential Calculus","volume":"414 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131824818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 17
Optimal (ω,c)-asymptotically periodic mild solutions to some fractional evolution equations 一类分数阶演化方程的最优(ω,c)-渐近周期温和解
Fractional Differential Calculus Pub Date : 1900-01-01 DOI: 10.7153/fdc-2023-13-01
R. G. Foko Tiomela, Gaston M. 'Guerekata, G. Mophou
{"title":"Optimal (ω,c)-asymptotically periodic mild solutions to some fractional evolution equations","authors":"R. G. Foko Tiomela, Gaston M. 'Guerekata, G. Mophou","doi":"10.7153/fdc-2023-13-01","DOIUrl":"https://doi.org/10.7153/fdc-2023-13-01","url":null,"abstract":"","PeriodicalId":135809,"journal":{"name":"Fractional Differential Calculus","volume":"40 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134633511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comparative study on some semi-analytical methods for the solutions of fractional partial integro-differential equations 分数阶偏积分-微分方程几种半解析解的比较研究
Fractional Differential Calculus Pub Date : 1900-01-01 DOI: 10.7153/fdc-2022-12-14
J. Mohapatra, Abhilipsa Panda, N. R. Reddy
{"title":"A comparative study on some semi-analytical methods for the solutions of fractional partial integro-differential equations","authors":"J. Mohapatra, Abhilipsa Panda, N. R. Reddy","doi":"10.7153/fdc-2022-12-14","DOIUrl":"https://doi.org/10.7153/fdc-2022-12-14","url":null,"abstract":"","PeriodicalId":135809,"journal":{"name":"Fractional Differential Calculus","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117144192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信