指数广义(m,ω,h_1,h_2)-前倒凸函数的分数不等式及其应用

A. Kashuri, M. Kunt
{"title":"指数广义(m,ω,h_1,h_2)-前倒凸函数的分数不等式及其应用","authors":"A. Kashuri, M. Kunt","doi":"10.7153/fdc-2020-10-05","DOIUrl":null,"url":null,"abstract":". The aim of this paper is to introduce a new extension of preinvexity called expo- nentially generalized ( m , ω , h 1 , h 2 ) –preinvexity. Some new integral inequalities of Hermite– Hadamard type for exponentially generalized ( m , ω , h 1 , h 2 ) –preinvex functions via Riemann– Liouville fractional integral are established. We show that the class of exponentially generalized ( m , ω , h 1 , h 2 ) –preinvex functions includes several other classes of preinvex functions. At the end, some new error estimates for trapezoidal quadrature formula are provided as well. This results may stimulate further research in different areas of pure and applied sciences.","PeriodicalId":135809,"journal":{"name":"Fractional Differential Calculus","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fractional inequalities for exponentially generalized (m,ω,h_1,h_2)-preinvex functions with applications\",\"authors\":\"A. Kashuri, M. Kunt\",\"doi\":\"10.7153/fdc-2020-10-05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". The aim of this paper is to introduce a new extension of preinvexity called expo- nentially generalized ( m , ω , h 1 , h 2 ) –preinvexity. Some new integral inequalities of Hermite– Hadamard type for exponentially generalized ( m , ω , h 1 , h 2 ) –preinvex functions via Riemann– Liouville fractional integral are established. We show that the class of exponentially generalized ( m , ω , h 1 , h 2 ) –preinvex functions includes several other classes of preinvex functions. At the end, some new error estimates for trapezoidal quadrature formula are provided as well. This results may stimulate further research in different areas of pure and applied sciences.\",\"PeriodicalId\":135809,\"journal\":{\"name\":\"Fractional Differential Calculus\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractional Differential Calculus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7153/fdc-2020-10-05\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractional Differential Calculus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/fdc-2020-10-05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

. 本文的目的是引入先验性的一个新的推广,称为expo-本质广义(m, ω, h 1, h 2) -先验性。利用Riemann - Liouville分数积分建立了指数广义(m, ω, h 1, h 2) -预逆函数的Hermite - Hadamard型积分不等式。我们证明了一类指数广义(m, ω, h 1, h 2) -预凸函数包含了其他几类预凸函数。最后,对梯形正交公式给出了一些新的误差估计。这一结果可能会激发在纯科学和应用科学不同领域的进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fractional inequalities for exponentially generalized (m,ω,h_1,h_2)-preinvex functions with applications
. The aim of this paper is to introduce a new extension of preinvexity called expo- nentially generalized ( m , ω , h 1 , h 2 ) –preinvexity. Some new integral inequalities of Hermite– Hadamard type for exponentially generalized ( m , ω , h 1 , h 2 ) –preinvex functions via Riemann– Liouville fractional integral are established. We show that the class of exponentially generalized ( m , ω , h 1 , h 2 ) –preinvex functions includes several other classes of preinvex functions. At the end, some new error estimates for trapezoidal quadrature formula are provided as well. This results may stimulate further research in different areas of pure and applied sciences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信