Fractional resolvent operator with α ∈ (0,1) and applications

J. P. C. D. Santos
{"title":"Fractional resolvent operator with α ∈ (0,1) and applications","authors":"J. P. C. D. Santos","doi":"10.7153/fdc-2019-09-13","DOIUrl":null,"url":null,"abstract":". In this paper we study an analytic resolvent family for abstract fractional integro- differential system using the perturbation theory of sectorial operators. We apply this resolvent family on the existence of mild solutions for abstract semilinear Cauchy problem where D α t u represents the Caputo derivative of u for α ∈ ( 0 , 1 ) , A , ( B ( t )) t (cid:2) 0 are closed linear operators de fi ned on a common domain which is dense in a Banach space X and f satis fi es appropriated conditions. In the end, we applain the ours abstract results in the existence of mild solution of two partial integro-differential systems.","PeriodicalId":135809,"journal":{"name":"Fractional Differential Calculus","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractional Differential Calculus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/fdc-2019-09-13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

. In this paper we study an analytic resolvent family for abstract fractional integro- differential system using the perturbation theory of sectorial operators. We apply this resolvent family on the existence of mild solutions for abstract semilinear Cauchy problem where D α t u represents the Caputo derivative of u for α ∈ ( 0 , 1 ) , A , ( B ( t )) t (cid:2) 0 are closed linear operators de fi ned on a common domain which is dense in a Banach space X and f satis fi es appropriated conditions. In the end, we applain the ours abstract results in the existence of mild solution of two partial integro-differential systems.
α∈(0,1)的分数分解算子及其应用
. 本文利用扇形算子的摄动理论,研究了抽象分数阶积分微分系统的解析解族。我们将此解族应用于抽象半线性柯西问题的弱解的存在性上,其中D α t u表示u对α∈(0,1)的Caputo导数,A, (B (t)) t (cid:2) 0是定义在Banach空间X上稠密的公共域上且满足5个适当条件的闭线性算子。最后,我们将我们的抽象结果应用于两个偏积分-微分系统温和解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信