{"title":"正则分数阶Sturm-Liouville问题正解的存在性","authors":"Tahereh Haghi, K. Ghanbari, A. Mingarelli","doi":"10.7153/fdc-2019-09-18","DOIUrl":null,"url":null,"abstract":". In this article we investigate existence and nonexistence results for some regular frac- tional Sturm-Liouville problems. We fi nd the eigenvalues intervals of this problem may or may not have a positive solution. Some suf fi cient conditions for existence and nonexistence of posi- tive solutions are given. Further, we study some special properties of positive solutions. We give some examples at the end.","PeriodicalId":135809,"journal":{"name":"Fractional Differential Calculus","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Existence of positive solutions for regular fractional Sturm-Liouville problems\",\"authors\":\"Tahereh Haghi, K. Ghanbari, A. Mingarelli\",\"doi\":\"10.7153/fdc-2019-09-18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this article we investigate existence and nonexistence results for some regular frac- tional Sturm-Liouville problems. We fi nd the eigenvalues intervals of this problem may or may not have a positive solution. Some suf fi cient conditions for existence and nonexistence of posi- tive solutions are given. Further, we study some special properties of positive solutions. We give some examples at the end.\",\"PeriodicalId\":135809,\"journal\":{\"name\":\"Fractional Differential Calculus\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractional Differential Calculus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7153/fdc-2019-09-18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractional Differential Calculus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/fdc-2019-09-18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Existence of positive solutions for regular fractional Sturm-Liouville problems
. In this article we investigate existence and nonexistence results for some regular frac- tional Sturm-Liouville problems. We fi nd the eigenvalues intervals of this problem may or may not have a positive solution. Some suf fi cient conditions for existence and nonexistence of posi- tive solutions are given. Further, we study some special properties of positive solutions. We give some examples at the end.