正则分数阶Sturm-Liouville问题正解的存在性

Tahereh Haghi, K. Ghanbari, A. Mingarelli
{"title":"正则分数阶Sturm-Liouville问题正解的存在性","authors":"Tahereh Haghi, K. Ghanbari, A. Mingarelli","doi":"10.7153/fdc-2019-09-18","DOIUrl":null,"url":null,"abstract":". In this article we investigate existence and nonexistence results for some regular frac- tional Sturm-Liouville problems. We fi nd the eigenvalues intervals of this problem may or may not have a positive solution. Some suf fi cient conditions for existence and nonexistence of posi- tive solutions are given. Further, we study some special properties of positive solutions. We give some examples at the end.","PeriodicalId":135809,"journal":{"name":"Fractional Differential Calculus","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Existence of positive solutions for regular fractional Sturm-Liouville problems\",\"authors\":\"Tahereh Haghi, K. Ghanbari, A. Mingarelli\",\"doi\":\"10.7153/fdc-2019-09-18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this article we investigate existence and nonexistence results for some regular frac- tional Sturm-Liouville problems. We fi nd the eigenvalues intervals of this problem may or may not have a positive solution. Some suf fi cient conditions for existence and nonexistence of posi- tive solutions are given. Further, we study some special properties of positive solutions. We give some examples at the end.\",\"PeriodicalId\":135809,\"journal\":{\"name\":\"Fractional Differential Calculus\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractional Differential Calculus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7153/fdc-2019-09-18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractional Differential Calculus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/fdc-2019-09-18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

. 本文研究了一类正则分段Sturm-Liouville问题的存在性和不存在性结果。我们发现这个问题的特征值区间可能有正解,也可能没有正解。给出了正解存在和不存在的几个充分条件。进一步研究了正解的一些特殊性质。我们在最后给出了一些例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence of positive solutions for regular fractional Sturm-Liouville problems
. In this article we investigate existence and nonexistence results for some regular frac- tional Sturm-Liouville problems. We fi nd the eigenvalues intervals of this problem may or may not have a positive solution. Some suf fi cient conditions for existence and nonexistence of posi- tive solutions are given. Further, we study some special properties of positive solutions. We give some examples at the end.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信