Kai Zhang , Xiaotian Wang , Shaoyi Li , Bingyi Zhang
{"title":"Small aircraft detection in infrared aerial imagery based on deep neural network","authors":"Kai Zhang , Xiaotian Wang , Shaoyi Li , Bingyi Zhang","doi":"10.1016/j.infrared.2024.105454","DOIUrl":"10.1016/j.infrared.2024.105454","url":null,"abstract":"<div><div>Detection of aerial target is an important part of infrared image processing. Both neural network method and traditional method can be used in infrared object detection. Neural network method has many advantages such as high accuracy and good portability compared with traditional object detection method. Since the features extracted by neural network method can change over detection target, automatic feature extraction makes neural network based detection method more effective. In recent years deep learning method has been also found wide use for object detection in images. In this paper, an object detection model based on the deep learning network YOLO is constructed for solving the infrared aircraft detection problem. We construct the dataset used for training and testing with recognized features being iteratively learned. The task of infrared object detection is sensitive to model size and detection speed. There is a requirement of using quantization method to reduce the storage space and the computation complexity. We propose a quantized model with appropriate accuracy for infrared object detection task. To solve the detection task for multiple extremely small aircrafts, model adjustment and quantization are used in proposed model and it gets a better performance. Experimental results on the constructed dataset show that the storage space for weight after quantization shrinks to a quarter, and there is no precision loss for extremely small aircrafts compared to the original model. The optimized YOLO-based deep learning model is effective to detect the small aircraft target in infrared aerial imagery.</div></div>","PeriodicalId":13549,"journal":{"name":"Infrared Physics & Technology","volume":"143 ","pages":"Article 105454"},"PeriodicalIF":3.1,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142655771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ye Zhang , Yifan Shan , Faran Chang , Yan Liang , Xiangyu Zhang , Guowei Wang , Donghai Wu , Dongwei Jiang , Hongyue Hao , Yingqiang Xu , Haiqiao Ni , Dan Lu , Zhichuan Niu
{"title":"Improvement of mid-wavelength InAs/InAsSb nBn infrared detectors performance through interface control","authors":"Ye Zhang , Yifan Shan , Faran Chang , Yan Liang , Xiangyu Zhang , Guowei Wang , Donghai Wu , Dongwei Jiang , Hongyue Hao , Yingqiang Xu , Haiqiao Ni , Dan Lu , Zhichuan Niu","doi":"10.1016/j.infrared.2024.105619","DOIUrl":"10.1016/j.infrared.2024.105619","url":null,"abstract":"<div><div>We report our study to optimize the growth of mid-wavelength InAs/InAsSb nBn infrared detectors through interface control method with AlSb/AlAs superlattices as electron barrier. The dark current model was employed to investigate the dominant dark current mechanism at various operating temperatures. We extracted the minority carrier lifetime of InAs/InAsSb material grown by different interface growth methods. Electrical and optical characterizations indicated superior performance of the device grown by migration-enhanced epitaxy (MEE) with a 3 s As and Sb soak time. With −0.3 V applied bias and 150 K operating temperature, the optimal device shown a dark current density of 8.95 × 10<sup>−6</sup> A/cm<sup>2</sup> and peak specific detectivity of 7.12 × 10<sup>11</sup> cm Hz<sup>1/2</sup>/W at 3.8 µm.</div></div>","PeriodicalId":13549,"journal":{"name":"Infrared Physics & Technology","volume":"143 ","pages":"Article 105619"},"PeriodicalIF":3.1,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142655773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fuchao Tian , Xinyu Xiang , Lejing Qin , Jiliang Huang , Bo Tan
{"title":"Optimization and effect comparison of typical gas pressure compensation model in chemical industry park","authors":"Fuchao Tian , Xinyu Xiang , Lejing Qin , Jiliang Huang , Bo Tan","doi":"10.1016/j.infrared.2024.105621","DOIUrl":"10.1016/j.infrared.2024.105621","url":null,"abstract":"<div><div>In chemical parks, the leakage of harmful gases can lead to poisoning and even explosions. Therefore, its monitoring and leakage warnings are crucial. This paper takes the harmful gases CO<sub>2</sub>, CH<sub>4</sub>, and CO as examples, and set up an infrared gas sensor pressure compensation experimental platform to carry out experiments, to solve the problem of decreased detection accuracy of gas sensors due to changes in ambient pressure during detection. The pressure compensation experimental ranges of the gas sensors are 0 ∼ 5 %, 0 ∼ 20 %, and 0 ∼ 1000 ppm, and the maximum absolute errors of the infrared gas test data obtained under different concentrations and pressures are 0.24 ∼ 0.67, 0.89 ∼ 1.12, and 45 ∼ 60 ppm, respectively. The pressure compensation model based on the least squares method was constructed, and the maximum absolute errors were obtained as 0.08 ∼ 0.19, 0.13 ∼ 0.64, and 24 ∼ 37 ppm, respectively. The pressure compensation model based on the GA-BP neural network was constructed, and the maximum absolute errors were 0.04 ∼ 0.10, 0.08 ∼ 0.10, and 0.60 ∼ 8.30 ppm, respectively. The GA-BP neural network combines the genetic algorithm and the backpropagation algorithm, which can better deal with nonlinear problems. The comparison of these two models reflects the superiority of the GA-BP neural network model in the compensation effect. The establishment of the neural network pressure compensation model optimized by the genetic algorithm can effectively improve the detection accuracy of the gas sensor, and it is expected that the results are of great practical significance to guarantee production safety and protect the environment in the enterprise chemical park.</div></div>","PeriodicalId":13549,"journal":{"name":"Infrared Physics & Technology","volume":"143 ","pages":"Article 105621"},"PeriodicalIF":3.1,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142655763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zichuan Yuan , Qiang Ling , Ke Dai , Si Luo , Chenning Tao , Lin Huang , Jiantao Dong , Zuguang Guan , Yusheng Zhang , Daru Chen , Yudong Cui
{"title":"Intermediate state between steady and breathing solitons in fiber lasers","authors":"Zichuan Yuan , Qiang Ling , Ke Dai , Si Luo , Chenning Tao , Lin Huang , Jiantao Dong , Zuguang Guan , Yusheng Zhang , Daru Chen , Yudong Cui","doi":"10.1016/j.infrared.2024.105622","DOIUrl":"10.1016/j.infrared.2024.105622","url":null,"abstract":"<div><div>Ultrafast fiber laser, a vital tool in both science and industry, exhibits two distinct pulse states: the steady soliton (SS) and the breathing soliton (BS). While these states have been extensively studied individually, understanding the complex transition between them is crucial for controlling lasing states effectively. Herein, our experimental observations reveal an intermediate state that toggles between SS and BS, enabled by the dispersive Fourier transform technique. We find that energy hop and decaying breathing processes, driven respectively by the energy quantization effect and Q-switched modulation, govern this transition. Additionally, we observe that the transition between different BS states primarily involves a pure decaying breathing process. Numerical simulations are used to generate similar transition dynamics in a model that combines equations describing the population inversion in a mode-locked laser. This study sheds light on the transition dynamics in non-equilibrium systems, offering insights for intelligently manipulating lasing states.</div></div>","PeriodicalId":13549,"journal":{"name":"Infrared Physics & Technology","volume":"143 ","pages":"Article 105622"},"PeriodicalIF":3.1,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142572615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Haitao Zong , Zhiguo Liu , Ming Li , Houchang Chen , Xinchun Tao , Yuehong Yin , Wei Wang , Cong Zhang , Wentao Qiao , Lingling Yan , Bai Sun
{"title":"Improving the thermochromic performance of VO2 films by embedding Cu-Al nanoparticles as heterogeneous nucleation cores in the VO2/VO2 bilayer structure","authors":"Haitao Zong , Zhiguo Liu , Ming Li , Houchang Chen , Xinchun Tao , Yuehong Yin , Wei Wang , Cong Zhang , Wentao Qiao , Lingling Yan , Bai Sun","doi":"10.1016/j.infrared.2024.105620","DOIUrl":"10.1016/j.infrared.2024.105620","url":null,"abstract":"<div><div>VO<sub>2</sub>-based films show great potential applications in thermochromic smart windows. However, enhancing luminous transmittance (<em>T<sub>lum</sub></em>) while maintaining high solar modulation ability (<em>ΔT<sub>sol</sub></em>) remains a formidable challenge. Here, we present a novel VO<sub>2</sub>/Cu-Al nanoparticles (NPs)/VO<sub>2</sub> composite film structure, seamlessly integrating Cu-Al bimetallic NPs within VO<sub>2</sub> films by pulsed laser deposition on alkali-free glass substrates. The content of Cu-Al NPs in the composite films is controlled by the pulse number (<em>N<sub>p</sub></em>) applied to the Cu-Al alloy target. X-ray diffraction results indicate that the crystallinity of VO<sub>2</sub> films is significantly enhanced by the incorporation of an appropriate amount of Cu-Al NPs. The SEM characterization results revealed that the particle size of VO<sub>2</sub> composite films initially increases to approximately 131 nm and subsequently decreases to around 120 nm as <em>N<sub>p</sub></em> increases, with a concurrent transition in particle shape from quasi-circular to elongated. The <em>T<sub>lum</sub></em> and <em>ΔT<sub>sol</sub></em> of the resulting composite films were dramatically improved to 71.6 % and 9.5 %, respectively, when <em>N<sub>p</sub></em> was 300. These enhanced thermochromic properties are attributed to the localized surface plasmon resonance (LSPR) of the VO<sub>2</sub> particles. This research opens up a promising avenue for the convenient production of customized high-quality VO<sub>2</sub> films tailored for smart window applications.</div></div>","PeriodicalId":13549,"journal":{"name":"Infrared Physics & Technology","volume":"143 ","pages":"Article 105620"},"PeriodicalIF":3.1,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142593302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"K-means adaptive 2DSSA based on sparse representation model for hyperspectral target detection","authors":"Tianshu Zhou , Yi Cen , Jiani He , Yueming Wang","doi":"10.1016/j.infrared.2024.105616","DOIUrl":"10.1016/j.infrared.2024.105616","url":null,"abstract":"<div><div>Target detection is a hot spot in hyperspectral imagery (HSI) processing. The detection accuracy of target detection algorithms based on sparse representation (SR) models usually suffers from the high reconstruction residuals caused by inaccurate background estimations and insufficient target samples. Besides, with the development of hyperspectral imaging technology, the spatial resolution of HSI has been continuously enhanced, which can provide more spatial information for target detection. However, spatial information is often overlooked, leading to the underutilization of the pluralistic features of HSI. Target detection using only spectral information is susceptible to spectral variation, resulting in a high false alarm rate. To alleviate these problems, this paper proposes a joint spatial-spectral algorithm. In terms of spectra, a dictionary construction strategy (DCS) is designed for the sparse representation-based binary hypothesis (SRBBH) detector to reduce reconstruction residuals of target and background samples. In terms of space, k-means 2D adaptive singular spectrum analysis (KSSA) is used to extract spatial features in cluster units. Using spatial features can enhance the robustness of the algorithm to spectral variation, thereby reducing false alarms. The target detection results are obtained by applying DCS-SRBBH to the KSSA feature image. We evaluate the proposed algorithm on three datasets: two public and one of our own. Comprehensive experimental results indicate that the proposed algorithm outperforms other target detection algorithms in terms of accuracy.</div></div>","PeriodicalId":13549,"journal":{"name":"Infrared Physics & Technology","volume":"143 ","pages":"Article 105616"},"PeriodicalIF":3.1,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142655764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yang Cheng , Qi OuYang , Cancan Yao , Lin Liu , Zhaohui Li , Qun Hao
{"title":"Dielectric-elastomer-driven long-wave infrared Alvarez lenses for continuous zooming imaging","authors":"Yang Cheng , Qi OuYang , Cancan Yao , Lin Liu , Zhaohui Li , Qun Hao","doi":"10.1016/j.infrared.2024.105614","DOIUrl":"10.1016/j.infrared.2024.105614","url":null,"abstract":"<div><div>With the concept of SWaP-C (size, weight, power, and cost), a light, small, low-cost, and high-performance uncooled infrared optical zooming imaging system is pursued. However, the traditional mechanical optical zooming method makes it difficult to meet those requirements. In this paper, a compact uncooled long-wave infrared continuous zooming imaging system using the Alvarez lens actuated by dielectric elastomer is proposed. The infrared zoom imaging system mainly consists of two pairs of infrared Alvarez lenses, an adjustable optical stop, focusing lenses, and an infrared detector. The first pair of infrared Alvarez lenses serves as the zoom group and the second pair serves as the compensation group. The infrared Alvarez lenses are fabricated by five-axis diamond turning and milling technology. The experiment results show that when the dielectric elastomer can provide a lateral displacement of 1.44 mm to the first pair of infrared Alvarez lenses and a lateral displacement of 1.03 mm to the second pair of infrared Alvarez lenses. The infrared continuous zooming imaging system covers the long-wave band of 8 ∼ 12 µm. The zoom ratio can be changed from 5 × to 15 × and the F-number is 2.0. The total optical length of the proposed system is less than 80 mm. The resolution of the infrared detector is 640 × 512 with a pixel spacing of 17 µm. The dynamic response time testing revealed that the rise and fall times are 132 ms and 92 ms, respectively. The proposed long-wave infrared continuous zooming imaging system can be used in miniaturized devices such as UAV equipment and thermal imaging cameras in the future.</div></div>","PeriodicalId":13549,"journal":{"name":"Infrared Physics & Technology","volume":"143 ","pages":"Article 105614"},"PeriodicalIF":3.1,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142572617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Guojie Wu , Yuchen Guan , Zhenfeng Gong , Xue Wu , Liang Mei
{"title":"A miniaturized multi-mechanism resonance-enhanced fiber optic photoacoustic multi-gas sensor","authors":"Guojie Wu , Yuchen Guan , Zhenfeng Gong , Xue Wu , Liang Mei","doi":"10.1016/j.infrared.2024.105615","DOIUrl":"10.1016/j.infrared.2024.105615","url":null,"abstract":"<div><div>A multi-mechanism resonance-enhanced fiber-optic photoacoustic multi-gas sensor (MR-FOPMS) is reported, in which the acoustic resonance of the T-type resonator is employed for C<sub>2</sub>H<sub>2</sub> gas sensing and the mechanical resonance of the silicon cantilever is employed for the detection of CH<sub>4</sub> gas sensing. The silicon cantilever fiber-optic microphone and T-type photoacoustic resonator are designed using theoretical and finite element methods. The optimized cavity volume of the entire sensor is only 9.3 cm<sup>3</sup> and the optimized silicon cantilever microphone has an ultra-high sensitivity of 62540.2 nm/Pa at the resonance. The ability of the sensor to detect multiple gases is demonstrated by simultaneous measurement of C<sub>2</sub>H<sub>2</sub> and CH<sub>4</sub> using two DFB lasers at 1532.8 nm and 1650.96 nm as excitation sources. The lowest detection limits of the sensor are determined to be 158 and 382 ppb for C<sub>2</sub>H<sub>2</sub> and CH<sub>4</sub>, respectively, corresponding to normalized noise equivalent absorption coefficients of 2.82 × 10<sup>-9</sup>, 1.43 × 10<sup>-9</sup> cm<sup>−1</sup> W Hz<sup>−1/2</sup>, respectively.</div></div>","PeriodicalId":13549,"journal":{"name":"Infrared Physics & Technology","volume":"143 ","pages":"Article 105615"},"PeriodicalIF":3.1,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142655765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hangyu Xu , Chenyu Huang , Tengfei Xu , Zexi Liu , Rong Zhao , Jiale He , Tiange Zhao , Xiao Fu
{"title":"Gate-tunable in-sensor computing vdW heterostructures for infrared photodetection","authors":"Hangyu Xu , Chenyu Huang , Tengfei Xu , Zexi Liu , Rong Zhao , Jiale He , Tiange Zhao , Xiao Fu","doi":"10.1016/j.infrared.2024.105611","DOIUrl":"10.1016/j.infrared.2024.105611","url":null,"abstract":"<div><div>Convolutional preprocessing is feasible for feature extraction and accurate recognition. In-sensor computing, which requires a photodetector with a computation function, is a potential candidate for hardware-implemented preprocessing. However, limited by the high carrier concentration in infrared sensing materials, reconfigurable manipulation of photocarriers is hardly complemented. Thus, previous works mostly focused on preprocessing in the visible range. Here, we propose a gate-tunable BP/MoS<sub>2</sub> heterostructure. With an elaborate design on the material’s thickness, the depletion region can be precisely controlled, resulting in multiple and reconfigurable responsivity states. With a sharp and clean interface, our device shows strong linear dependence over the broadband spectrum, which is the prerequisite for constructing convolutional kernels. Furthermore, observing the maximum photocurrent in the <em>V<sub>g</sub></em> sweeping process demonstrates strong regulation of carrier concentration in the infrared sensing material, BP layer. Since it has superior performance in high linearity and multiple states construction, our device is suitable for realizing computation in photodetector for convolutional preprocessing, underscoring its superiority in intelligent infrared perception and preprocessing.</div></div>","PeriodicalId":13549,"journal":{"name":"Infrared Physics & Technology","volume":"143 ","pages":"Article 105611"},"PeriodicalIF":3.1,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142578689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Min Yang , Xianzhong Sun , Dapeng Chen , Peng Xiu , Jie Yang , Hongxia Mao
{"title":"An improved infrared polarization model considering the volume scattering effect for coating materials","authors":"Min Yang , Xianzhong Sun , Dapeng Chen , Peng Xiu , Jie Yang , Hongxia Mao","doi":"10.1016/j.infrared.2024.105613","DOIUrl":"10.1016/j.infrared.2024.105613","url":null,"abstract":"<div><div>The conventional infrared polarization models ignore the absorption and scattering of infrared light within the coating materials, as well as directional diffuse reflection effect of infrared radiation on the coating surface, which have the limitation for the description of infrared polarization characteristic of coating materials. An improved infrared polarized bidirectional reflectance distribution function (pBRDF) model is proposed based on the microfacet theory, which integrates a volume scattering component developed from the Kubelka-Munk theory, a multiple reflection component and a specular reflection component. This model is more consistent with the infrared polarization characteristics within the actual coating materials. The expression of degree of linear polarization (DoLP) of the infrared radiation is derived. The infrared polarization data of the silver and brown coatings at different measuring angles are acquired by the infrared polarization imaging system, and the model parameters are inverted using the least squares inverse performance method. The simulated and measured results for our coating samples show that the DoLP values simulated by the improved infrared pBRDF model are found in a good agreement with the measurements. The infrared DoLP does not change with the azimuth angle, and mainly influenced by the detection zenith angle, which has a great potential for material classification, polarization remote sensing and infrared scene modeling.</div></div>","PeriodicalId":13549,"journal":{"name":"Infrared Physics & Technology","volume":"143 ","pages":"Article 105613"},"PeriodicalIF":3.1,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}