Inflammation最新文献

筛选
英文 中文
AMPK Regulates M1 Macrophage Polarization through the JAK2/STAT3 Signaling Pathway to Attenuate Airway Inflammation in Obesity-Related Asthma. AMPK通过JAK2/STAT3信号通路调节M1巨噬细胞极化,从而减轻肥胖相关性哮喘的气道炎症。
IF 4.5 2区 医学
Inflammation Pub Date : 2025-02-01 Epub Date: 2024-06-17 DOI: 10.1007/s10753-024-02070-x
Jiahui Lei, Zhenhui Shu, He Zhu, Limin Zhao
{"title":"AMPK Regulates M1 Macrophage Polarization through the JAK2/STAT3 Signaling Pathway to Attenuate Airway Inflammation in Obesity-Related Asthma.","authors":"Jiahui Lei, Zhenhui Shu, He Zhu, Limin Zhao","doi":"10.1007/s10753-024-02070-x","DOIUrl":"10.1007/s10753-024-02070-x","url":null,"abstract":"<p><p>Abstract-Obesity-related asthma is primarily characterized by nonallergic inflammation, with pathogenesis involving oxidative stress, metabolic imbalance, and immunoinflammatory mechanisms. M1 macrophages, which predominantly secrete pro-inflammatory factors, mediate insulin resistance and systemic metabolic inflammation in obese individuals. Concurrently, adenosine monophosphate-activated protein kinase (AMPK) serves as a critical regulator of intracellular energy metabolism and is closely associated with macrophage activation. However, their specific roles and associated mechanisms in obesity-related asthma remain to be explored. In this study, we investigated the macrophage polarization status and potential interventional mechanisms through obesity-related asthmatic models and lipopolysaccharide (LPS) -treated RAW264.7 cell with a comprehensive series of evaluations, including HE, PAS and Masson staining of lung histopathology, immunohistochemical staining, immunofluorescence technology, qRT-PCR, Western Blot, and ELISA inflammatory factor analysis. The results revealed M1 macrophage polarization in obesity-related asthmatic lung tissue alongside downregulation of AMPK expression. Under LPS stimulation, exogenous AMPK activation attenuated M1 macrophage polarization via the Janus kinase 2/ signal transducer and activator of transcription 3 (JAK2/STAT3) signaling pathway. Additionally, in obesity-related asthmatic mice, AMPK activation was found to alleviate airway inflammation by regulating M1 macrophage polarization, the mechanism closely associated with the JAK2/STAT3 pathway. These findings not only advance our understanding of macrophage polarization in obesity-related asthma, but also provide new therapeutic targets for its treatment.</p>","PeriodicalId":13524,"journal":{"name":"Inflammation","volume":" ","pages":"372-392"},"PeriodicalIF":4.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141418780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RGS1 Enhancer RNA Promotes Gene Transcription by Recruiting Transcription Factor FOXJ3 and Facilitates Osteoclastogenesis Through PLC-IP3R-dependent Ca2+ Response in Rheumatoid Arthritis. RGS1 Enhancer RNA 通过招募转录因子 FOXJ3 促进基因转录,并通过 PLC-IP3R 依赖性 Ca2+ 响应促进类风湿关节炎的破骨细胞生成。
IF 4.5 2区 医学
Inflammation Pub Date : 2025-02-01 Epub Date: 2024-06-21 DOI: 10.1007/s10753-024-02067-6
Lin Yuan, Nan Jiang, Yuxuan Li, Xin Wang, Wei Wang
{"title":"RGS1 Enhancer RNA Promotes Gene Transcription by Recruiting Transcription Factor FOXJ3 and Facilitates Osteoclastogenesis Through PLC-IP3R-dependent Ca<sup>2+</sup> Response in Rheumatoid Arthritis.","authors":"Lin Yuan, Nan Jiang, Yuxuan Li, Xin Wang, Wei Wang","doi":"10.1007/s10753-024-02067-6","DOIUrl":"10.1007/s10753-024-02067-6","url":null,"abstract":"<p><p>Recent evidence has highlighted the functions of enhancers in modulating transcriptional machinery and affecting the development of human diseases including rheumatoid arthritis (RA). Enhancer RNAs (eRNAs) are RNA molecules transcribed from active enhancer regions. This study investigates the specific function of eRNA in gene transcription and osteoclastogenesis in RA. Regulator of G protein signaling 1 (RGS1)-associated eRNA was highly activated in osteoclasts according to bioinformatics prediction. RGS1 mRNA was increased in mice with collagen-induced arthritis as well as in M-CSF/soluble RANKL-stimulated macrophages (derived from monocytes). This was ascribed to increased RGS1 eRNA activity. Silencing of 5'-eRNA blocked the binding between forkhead box J3 (FOXJ3) and the RGS1 promoter, thus suppressing RGS1 transcription. RGS1 accelerated osteoclastogenesis through PLC-IP3R-dependent Ca<sup>2+</sup> response. Knockdown of either FOXJ3 or RGS1 ameliorated arthritis severity, improved pathological changes, and reduced osteoclastogenesis and bone erosion in vivo and in vitro. However, the effects of FOXJ3 silencing were negated by RGS1 overexpression. In conclusion, this study demonstrates that the RGS1 eRNA-driven transcriptional activation of the FOXJ3/RGS1 axis accelerates osteoclastogenesis through PLC-IP3R dependent Ca<sup>2+</sup> response in RA. The finding may offer novel insights into the role of eRNA in gene transcription and osteoclastogenesis in RA.</p>","PeriodicalId":13524,"journal":{"name":"Inflammation","volume":" ","pages":"447-463"},"PeriodicalIF":4.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141431862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative Proteomics Analysis Reveals Distinct Molecular Phenotype and Biomarkers in Patients with Erythrodermic Atopic Dermatitis and Erythrodermic Psoriasis. 蛋白质组学对比分析揭示红皮病型特应性皮炎和红皮病型银屑病患者不同的分子表型和生物标记物
IF 4.5 2区 医学
Inflammation Pub Date : 2025-02-01 Epub Date: 2024-06-14 DOI: 10.1007/s10753-024-02078-3
Biao Song, Xin Ning, Lan Guo, Weida Liu, Hongzhong Jin
{"title":"Comparative Proteomics Analysis Reveals Distinct Molecular Phenotype and Biomarkers in Patients with Erythrodermic Atopic Dermatitis and Erythrodermic Psoriasis.","authors":"Biao Song, Xin Ning, Lan Guo, Weida Liu, Hongzhong Jin","doi":"10.1007/s10753-024-02078-3","DOIUrl":"10.1007/s10753-024-02078-3","url":null,"abstract":"<p><p>Erythrodermic atopic dermatitis (EAD) and erythrodermic psoriasis (EP) are rare yet debilitating inflammatory skin disorders that propose challenges in diagnosis and discovering effective therapeutic targets. Despite their clinical and histological similarities, the underlying molecular mechanisms and systemic biomarkers of these diseases are substantially unclear. In this study, we sought to investigate the differential serum proteome of EP and EAD patients and identify biomarkers for these two subtypes of erythroderma. We recruited 14 EAD patients, 14 EP patients and 14 healthy controls. Serum samples were collected and analyzed using the Olink high-throughput platform to assess the levels of 269 inflammation-/immune response-/cardiovascular-related biomarkers. Both EAD and EP patients exhibited enhanced immune activation and dysregulated cardiovascular profiles compared to healthy controls. EAD demonstrated a more pronounced inflammation tone, characterized by Th1/Th2/Th22/IL-1-dominant patterns, as well as increased TNF superfamily, Th17, and apoptosis markers. Conversely, EP displayed inflammation with Th1/Th17/TNF-skewing and mild Th2 upregulation, along with notable increases in epidermal-development markers. Disease severity in EAD was strongly correlated with apoptosis/Th2 markers, while correlated with Th17 markers in EP. Furthermore, a panel of eight markers (IL-17A/IL-17C/PI3/CCL20/SH2D1A/SIRT2/DFFA/IL-13) was identified that effectively discriminated between EP and EAD, with an Area Under the Curve greater than 0.8. Our study comprehensively characterizes the circulating molecular profiles in EAD and EP patients, providing insights into the similarities and complexities of their inflammation phenotypes. The identified serum biomarkers have the potential to differentiate between EP and EAD, which could aid in the diagnosis and guiding tailored therapeutics.</p>","PeriodicalId":13524,"journal":{"name":"Inflammation","volume":" ","pages":"331-345"},"PeriodicalIF":4.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141320782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aspalathin, a Primary Rooibos Flavonoid, Alleviates Mast Cell-Mediated Allergic Inflammation by the Inhibition of FcεRI Signaling Pathway. 一种初级路依保斯黄酮类化合物 Aspalathin 通过抑制 FcεRI 信号通路缓解肥大细胞介导的过敏性炎症
IF 4.5 2区 医学
Inflammation Pub Date : 2025-02-01 Epub Date: 2024-05-23 DOI: 10.1007/s10753-024-02034-1
Yeyoung Kim, Soyoung Lee, Meiling Jin, Young-Ae Choi, Jin Kyeong Choi, Taeg Kyu Kwon, Dongwoo Khang, Sang-Hyun Kim
{"title":"Aspalathin, a Primary Rooibos Flavonoid, Alleviates Mast Cell-Mediated Allergic Inflammation by the Inhibition of FcεRI Signaling Pathway.","authors":"Yeyoung Kim, Soyoung Lee, Meiling Jin, Young-Ae Choi, Jin Kyeong Choi, Taeg Kyu Kwon, Dongwoo Khang, Sang-Hyun Kim","doi":"10.1007/s10753-024-02034-1","DOIUrl":"10.1007/s10753-024-02034-1","url":null,"abstract":"<p><p>Mast cells are primary cells initiating allergic inflammation by the release of various allergic mediators, such as histamine and pro-inflammatory cytokines. Aspalathin (ASP) is the predominant flavonoid found exclusively in rooibos, an herb that has been traditionally used in allergy relief therapy. In the present study, we investigated the beneficial effects of ASP on mast cell-mediated allergic inflammation. For in vivo study, two well-known mast cell-mediated local and systemic allergic inflammation mouse models were used: passive cutaneous anaphylaxis (PCA) and active systemic anaphylaxis mouse models (ASA). Oral administration of ASP dose-dependently suppressed immunoglobulin (Ig)E-mediated PCA responses evidenced by Evans blue extravasation, ear thickening, and mast cell degranulation. ASP also significantly mitigated ovalbumin-induced ASA responses, including hypothermia, histamine secretion, and the production of IgE and interleukin-4. Notably, ASP was more effective in suppressing allergic inflammation than nothofagin, another prominent flavonoid known as an anti-allergic component of rooibos. The regulatory mechanism of mast cell activation by ASP was clarified using mast cell line and primary cultured mast cells (RBL-2H3 and mouse bone marrow-derived mast cells). ASP reduced IgE-stimulated mast cells degranulation and intracellular calcium influx by the inhibition of FcεRI signaling pathway (Lyn, Fyn, and Syk). Moreover, ASP reduced pro-inflammatory cytokine expressions by inhibiting two major transcription factors, nuclear factor of activated T cells and nuclear factor-κB. Collectively, we proposed that ASP could be a potential therapeutic candidate for the treatment of mast cell-mediated allergic inflammatory diseases.</p>","PeriodicalId":13524,"journal":{"name":"Inflammation","volume":" ","pages":"199-211"},"PeriodicalIF":4.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141079653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Myeloid Cell mPGES-1 Deletion Attenuates Calcium Phosphate-induced Abdominal Aortic Aneurysm in Male Mice. 髓系细胞 mPGES-1 缺失可减轻磷酸钙诱发的雄性小鼠腹主动脉瘤
IF 4.5 2区 医学
Inflammation Pub Date : 2025-02-01 Epub Date: 2024-06-12 DOI: 10.1007/s10753-024-02055-w
Meina Guo, Shuang Ji, Hui Wang, Jiayang Zhang, Jingwen Zhu, Guangrui Yang, Lihong Chen
{"title":"Myeloid Cell mPGES-1 Deletion Attenuates Calcium Phosphate-induced Abdominal Aortic Aneurysm in Male Mice.","authors":"Meina Guo, Shuang Ji, Hui Wang, Jiayang Zhang, Jingwen Zhu, Guangrui Yang, Lihong Chen","doi":"10.1007/s10753-024-02055-w","DOIUrl":"10.1007/s10753-024-02055-w","url":null,"abstract":"<p><p>Microsomal PGE<sub>2</sub> synthase (mPGES)-1 is the key enzyme responsible for synthesizing inflammatory prostaglandin E<sub>2</sub> (PGE<sub>2</sub>). Our previous studies have shown that deletion mPGES-1 in myeloid cells hinders atherogenesis, suppresses vascular proliferative response to injury and enhances survival after myocardial infarction. Here we aimed to further explore the influence of myeloid cell mPGES-1 deletion in abdominal aortic aneurysm (AAA) formation. The AAA was triggered by applying 0.5 M calcium phosphate (CaPO<sub>4</sub>) to the infrarenal aorta of both myeloid mPGES-1 knockout (Mac-mPGES-1-KO) and their littermate control Mac-mPGES-1-WT mice. AAA induction was assessed by calculating the expansion of the infrarenal aortic diameter 4 weeks after CaPO<sub>4</sub> application. The maximum diameters of the aortas were measured by morphometry and the mean maximal diameters were calculated. Paraffin sections of the infrarenal aortas were examined for morphological analysis and immunohistochemical staining. The results showed that myeloid cell mPGES-1 deletion significantly mitigated AAA formation, including reducing expansion of the infrarenal aorta, preventing elastic lamellar degradation, and decreasing aortic calcium deposition. Immunohistochemical staining further indicated that macrophage infiltration and matrix metalloproteinase 2 (MMP2) expression was attenuated in the Mac-mPGES-1-KO aortas. Consistently, in vitro experiments showed that expression of pro-inflammatory cytokines and MMPs was significantly reduced when mPGES-1 was lacking in the primary cultured peritoneal macrophages. These data altogether demonstrated that deletion of mPGES-1 in myeloid cells may attenuate AAA formation and targeting myeloid cell mPGES-1 could potentially offer an effective strategy for the treatment and prevention of vascular inflammatory diseases.</p>","PeriodicalId":13524,"journal":{"name":"Inflammation","volume":" ","pages":"288-298"},"PeriodicalIF":4.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141305859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the Role of TRAF6-TAK1 Pathway in Podocyte Pyroptosis and Its Implications for Primary Membranous Nephropathy Therapy.
IF 4.5 2区 医学
Inflammation Pub Date : 2025-01-30 DOI: 10.1007/s10753-025-02249-w
Yaling Guo, Jingliang Min, Baochao Chang, Zheng Chen, Weidong Chen
{"title":"Exploring the Role of TRAF6-TAK1 Pathway in Podocyte Pyroptosis and Its Implications for Primary Membranous Nephropathy Therapy.","authors":"Yaling Guo, Jingliang Min, Baochao Chang, Zheng Chen, Weidong Chen","doi":"10.1007/s10753-025-02249-w","DOIUrl":"https://doi.org/10.1007/s10753-025-02249-w","url":null,"abstract":"<p><p>Primary membranous nephropathy (PMN) is a prevalent renal disorder characterized by immune-mediated damage to the glomerular basement membrane, with recent studies highlighting the significant role of pyroptosis in its progression. In this study, we investigate the molecular mechanisms underlying PMN, focusing on the role of Tumor necrosis factor receptor-associated factor 6 (TRAF6) in promoting disease advancement. Specifically, we examine how TRAF6 facilitates PMN progression by inducing the ubiquitination of Transforming growth factor-beta-activated kinase 1 (TAK1), which in turn activates the Gasdermin D (GSDMD)/Caspase-1 axis, leading to podocyte pyroptosis. Utilizing transcriptomic data from the gene expression omnibus database, we identified key regulatory factors involved in pyroptosis and validated these findings through the establishment of a C3a-induced podocyte injury model and a Sprague-Dawley (SD) rat model of PMN. Our findings reveal that TRAF6 is significantly upregulated in PMN, and its interaction with TAK1 is crucial for the activation of the GSDMD/Caspase-1 axis, ultimately driving podocyte pyroptosis. Further biochemical and molecular analyses confirmed the pivotal role of the TRAF6/TAK1 signaling pathway in the pathogenesis of PMN. These results underscore the importance of TRAF6-mediated signaling in the progression of PMN and suggest that targeting the TRAF6/TAK1/GSDMD/Caspase-1 axis may offer a novel therapeutic strategy for the treatment of this debilitating renal disease.</p>","PeriodicalId":13524,"journal":{"name":"Inflammation","volume":" ","pages":""},"PeriodicalIF":4.5,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143065211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploration of the Combined Mechanism of Direct and Indirect Effects of Paeoniflorin in the Treatment of Cholestasis.
IF 4.5 2区 医学
Inflammation Pub Date : 2025-01-27 DOI: 10.1007/s10753-025-02245-0
Wenwen Zhang, Zexin Wang, Rong Sun, Yi Zeng, Yuan Chen, Qichao Hu, Lisheng Chen, Xiao Ma, Yaoguang Guo, Yanling Zhao
{"title":"Exploration of the Combined Mechanism of Direct and Indirect Effects of Paeoniflorin in the Treatment of Cholestasis.","authors":"Wenwen Zhang, Zexin Wang, Rong Sun, Yi Zeng, Yuan Chen, Qichao Hu, Lisheng Chen, Xiao Ma, Yaoguang Guo, Yanling Zhao","doi":"10.1007/s10753-025-02245-0","DOIUrl":"https://doi.org/10.1007/s10753-025-02245-0","url":null,"abstract":"<p><p>Cholestasis is a multifactorial hepatobiliary disorder, characterized by obstruction of bile flow and accumulation of bile, which in turn causes damage to liver cells and other tissues. In severe cases, it can result in the development of life-threatening conditions, including cirrhosis and liver cancer. Paeoniflorin (PF) has been demonstrated to possess favourable therapeutic potential for the treatment of cholestasis. The objective of this research was to examine the molecular mechanism of PF in the treatment of ANIT-induced cholestasis and to propose novel avenues for further research on the pharmacological effects of PF. In vivo and in vitro models of cholestasis were developed. The histopathological changes in the bile ducts and liver were evaluated through the use of hematoxylin and eosin (HE) staining. The extent of apoptosis was evaluated through the use of immunofluorescence (IF), immunoblotting (WB), and electron microscopy. The JNK signalling pathway was identified as the direct mechanism of action of PF through the utilisation of HuProt™ 20 K chips and other technologies. The present study demonstrated that PF markedly alleviated liver injury in an ANIT-induced cholestasis model. Specifically, PF was observed to attenuate cholestasis-induced liver injury by reducing the abnormal elevation of liver function indices and suppressing the expression of inflammatory mediators. Furthermore, PF exhibited anti-apoptotic properties in both in vivo and in vitro experiments, thereby mitigating cholestasis-induced hepatocyte apoptosis. These protective effects are attributable to the fact that PF exerts its action through direct interaction with the JNK pathway. It has been demonstrated that PF is capable of binding directly to MAPK8 (JNK1) and MAPK9 (JNK2), thereby inhibiting JNK activation and reducing apoptosis. With regard to the protection of bile ducts, PF may indirectly inhibit hepatocyte apoptosis by maintaining the structural integrity and tight junctions of bile duct cells. PF improved cholestasis by inhibiting hepatocyte apoptosis directly by targeting the JNK signaling pathway and indirectly inhibited hepatocyte apoptosis by improving the tight junctions of bile duct cells to regulate the bile duct microenvironment.</p>","PeriodicalId":13524,"journal":{"name":"Inflammation","volume":" ","pages":""},"PeriodicalIF":4.5,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143046365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Kurarinone Mitigates LPS-Induced Inflammatory Osteolysis by Inhibiting Osteoclastogenesis Through the Reduction of ROS Levels and Suppression of the PI3K/AKT Signaling Pathway.
IF 4.5 2区 医学
Inflammation Pub Date : 2025-01-27 DOI: 10.1007/s10753-025-02244-1
Hao Lv, Hao Luo, Wen Tan, Junlong Zhong, Jiachao Xiong, Zhiming Liu, Qin Wu, Sijian Lin, Kai Cao
{"title":"Kurarinone Mitigates LPS-Induced Inflammatory Osteolysis by Inhibiting Osteoclastogenesis Through the Reduction of ROS Levels and Suppression of the PI3K/AKT Signaling Pathway.","authors":"Hao Lv, Hao Luo, Wen Tan, Junlong Zhong, Jiachao Xiong, Zhiming Liu, Qin Wu, Sijian Lin, Kai Cao","doi":"10.1007/s10753-025-02244-1","DOIUrl":"https://doi.org/10.1007/s10753-025-02244-1","url":null,"abstract":"<p><p>Inflammatory bone resorption represents a pathological condition marked by an increase in bone loss, commonly associated with chronic inflammatory conditions such as rheumatoid arthritis and periodontitis. Current therapies primarily focus on anti-inflammatory drugs and bisphosphonates; however, these treatments are limited due to side effects, inadequate efficacy, and unpredictable long-term complications. Kurarinone (KR), a bioactive compound isolated from the traditional Chinese herb Sophora flavescens, exhibits a range of biological activities, including anti-inflammatory, anticancer, and cardiovascular protective effects. To address the limitations of existing therapies and enhance drug utilization, this study explores the potential of KR as a therapeutic agent for inflammatory bone resorption and delineates its underlying mechanisms. In vitro experiments reveal that KR notably inhibits osteoclastogenesis and reduces the expression of osteoclastic markers. Additionally, KR decreases the levels of pro-inflammatory cytokines IL-1β, IL-6, and TNF-α, while downregulating NADPH oxidase 1 (NOX1) and Kelch-like ECH-associated protein 1 (Keap1) to diminish ROS production. Furthermore, KR activates the nuclear factor erythroid 2-related factor 2 (Nrf2), which enhances the activity of heme oxygenase-1 (HO-1) and catalase (CAT), facilitating the clearance of excess ROS. The compound also hinders osteoclast formation and functionality by inhibiting the PI3K/AKT/GSK-3β signaling pathway. Lentiviral knockdown of CAT can partially reverse these effects of KR. Meanwhile, in vivo experiments indicate that KR effectively mitigates bone loss in an LPS-induced inflammatory bone resorption model. In summary, KR is a promising new star in breaking through the limitations of previous drugs and treating inflammatory bone resorption.</p>","PeriodicalId":13524,"journal":{"name":"Inflammation","volume":" ","pages":""},"PeriodicalIF":4.5,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143052506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
KW-2449 Ameliorates Cardiac Dysfunction in a Rat Model of Sepsis-Induced Cardiomyopathy.
IF 4.5 2区 医学
Inflammation Pub Date : 2025-01-22 DOI: 10.1007/s10753-024-02223-y
Jie Chen, Wei-Jian Zhang, Xiao-Yu Liu, Tian-Peng Hu, Nan Gao, Zhong-Hao Li, Yu Wang, Guo-Qiang Zhang
{"title":"KW-2449 Ameliorates Cardiac Dysfunction in a Rat Model of Sepsis-Induced Cardiomyopathy.","authors":"Jie Chen, Wei-Jian Zhang, Xiao-Yu Liu, Tian-Peng Hu, Nan Gao, Zhong-Hao Li, Yu Wang, Guo-Qiang Zhang","doi":"10.1007/s10753-024-02223-y","DOIUrl":"https://doi.org/10.1007/s10753-024-02223-y","url":null,"abstract":"<p><p>KW-2449 is a novel multitargeted kinase inhibitor that has been reported to alleviate chronic inflammation and altered immunity during the treatment of autoimmune diseases. The aim of the study was to investigate the effect of KW-2449 on sepsis-induced cardiomyopathy (SIC). A rat model of moderate SIC was induced using the cecal ligation and puncture (CLP) method. KW-2449 was administered to rats at 10 mg/kg for 3 consecutive days by intraperitoneal injection. At 24 hours after CLP, echocardiography, electrocardiogram, and hemodynamic analyses were performed. Blood and cardiac tissues were collected for further analysis. RNA sequencing (RNA-seq) analyses were used to identify the key genes affected by KW-2449 treatment during SIC. KW-2449 improved the liver dysfunction in septic rats. KW-2449 significantly improved left ventricular (LV) systolic function and hemodynamics compared to the CLP group. KW-2449 suppressed the systemic inflammatory response, decreased myocardial inflammation and cell apoptosis in the CLP rats. RNA-seq analyses indicated that there were a total of 2256 differentially expressed genes in the CLP group compared to the Control group, among which 63 genes were down-regulated and 59 genes were up-regulated by KW-2449. Specifically, Pparα was identified as a key target gene of KW-2449 in the treatment of SIC by RNA-seq analysis.KW-2449 also significantly upregulated the protein expression of Pparα in the LV tissue of septic rats. KW-2449 reduced systemic inflammation, cardiac inflammation, and improved cardiac dysfunction in the CLP-induced SIC rat model. The underlying mechanism of the cardio-protective role of KW-2449 in the CLP-induced SIC might be related to Pparα.</p>","PeriodicalId":13524,"journal":{"name":"Inflammation","volume":" ","pages":""},"PeriodicalIF":4.5,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143023252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitigation of Neuroinflammation and Oxidative Stress in Rotenone-Induced Parkinson Mouse Model through Liposomal Coenzyme-Q10 Intervention: A Comprehensive In-vivo Study. 通过脂质体辅酶q10干预减轻鱼藤酮诱导的帕金森小鼠模型的神经炎症和氧化应激:一项全面的体内研究
IF 4.5 2区 医学
Inflammation Pub Date : 2025-01-21 DOI: 10.1007/s10753-025-02237-0
Hajira Umer, Ali Sharif, Humaira Majeed Khan, Syed Muhammad Muneeb Anjum, Bushra Akhtar, Sajid Ali, Muhammad Ali, Muhammad Asif Hanif
{"title":"Mitigation of Neuroinflammation and Oxidative Stress in Rotenone-Induced Parkinson Mouse Model through Liposomal Coenzyme-Q10 Intervention: A Comprehensive In-vivo Study.","authors":"Hajira Umer, Ali Sharif, Humaira Majeed Khan, Syed Muhammad Muneeb Anjum, Bushra Akhtar, Sajid Ali, Muhammad Ali, Muhammad Asif Hanif","doi":"10.1007/s10753-025-02237-0","DOIUrl":"https://doi.org/10.1007/s10753-025-02237-0","url":null,"abstract":"<p><p>Parkinson's disease (PD) stands as the sec most prevalent incapacitating neurodegenerative disorder characterized by deterioration of dopamine-producing neurons in the substantia nigra. Coenzyme Q10 (CoQ10) has garnered attention as a potential antioxidant, anti-inflammatory agent and enhancer of mitochondrial complex-I activity. This study aimed to examine and compare the effectiveness of liposomal and non-encapsulated CoQ10 in rotenone induced-PD mouse model over a 21-day treatment duration. 30 mice were divided into 5 equal groups: Group I (mice receiving normal saline), Group II (rotenone was administered to mice), Group III (standard CoQ10 was given to mice), Group IV (mice were treated with non-encapsulated CoQ10) and Group V (mice were treated with CoQ10 Liposomes). Motor performance, the preservation of dopaminergic neurons, levels of neuroinflammation, oxidative stress, neurotransmitter levels, RT-qPCR analysis of PD-linked genes and histopathology were evaluated. The Liposomal CoQ10 group exhibited superior outcomes in behavioral tests such as reduced anxiety in the open field test, enhanced balance and coordination in beam balance test and improved cognitive performance in Y-maze test. Liposomal Coenzyme Q10 displayed pronounced antioxidative effects, evidenced by a significant (p < 0.001) increase in superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) activities. In contrast, the non-encapsulated CoQ10 group showed a delayed response in mitigating the inflammation and oxidative stress. CoQ10 Liposomes demonstrated superior efficacy (p < 0.0001) in restoring dopamine and noradrenaline levels, reducing acetylcholinesterase activity, and downregulating Synuclein Alpha (SNCA) gene expression (0.722-fold change) compared to oral CoQ10, highlighting its potential in suppressing PD symptoms. The results of this study indicated that the liposomal CoQ10 effectively averted motor impairments, memory lapses, oxidative stress, as well as neuroinflammation triggered by rotenone.</p>","PeriodicalId":13524,"journal":{"name":"Inflammation","volume":" ","pages":""},"PeriodicalIF":4.5,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143004650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信