Siyu Li, Jie Wang, Ying Chen, Yanlu Cheng, Yanan Wang, Nuowen Xu, Hao Wang, Li Wang, Yangfeng Chi, Xiaoxue Ye, Yanting Shi, Ji Fang, Xingmei Yao, Jiebo Huang, Qing Xia, Tianli Bai, Bingbing Zhu
{"title":"Canagliflozin Attenuates Podocyte Inflammatory Injury through Suppressing the TXNIP/NLRP3 Signaling Pathway in Diabetic Kidney Disease Mice.","authors":"Siyu Li, Jie Wang, Ying Chen, Yanlu Cheng, Yanan Wang, Nuowen Xu, Hao Wang, Li Wang, Yangfeng Chi, Xiaoxue Ye, Yanting Shi, Ji Fang, Xingmei Yao, Jiebo Huang, Qing Xia, Tianli Bai, Bingbing Zhu","doi":"10.1007/s10753-025-02258-9","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetic kidney disease (DKD), a leading cause of end-stage renal disease (ESRD), poses a serious threat to global health. Aseptic inflammation and pyroptosis of podocytes are crucial factors contributing to the pathogenesis and progression of DKD. Sodium-glucose cotransporter 2 inhibitors (SGLT2i), a novel class of antidiabetic agents widely used in clinical settings, may exert a protective effect on podocyte injury, although the underlying mechanisms remain poorly understood. This study uses the streptozotocin (STZ) -induced DKD mouse model to further explore the mechanism by which SGLT2i protect podocytes. The results demonstrated that Canagliflozin (CANA) treatment significantly improved serum creatinine levels, 24-h urinary albumin excretion, and urinary albumin-to-creatinine ratio (UACR) in DKD mice. Additionally, CANA treatment attenuated glomerular and podocyte injury, reducing overall pathological damage. Mechanistically, CANA reduced the expression of key inflammatory markers in the renal cortex of DKD mice, including TXNIP, NLRP3, ASC, caspase-1, IL-1β, IL-18, and GSDMD. These findings suggest that CANA may be an effective therapeutic agent for DKD by inhibiting the TXNIP-NLRP3 inflammasome pathway and preventing podocyte pyroptosis.</p>","PeriodicalId":13524,"journal":{"name":"Inflammation","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10753-025-02258-9","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Diabetic kidney disease (DKD), a leading cause of end-stage renal disease (ESRD), poses a serious threat to global health. Aseptic inflammation and pyroptosis of podocytes are crucial factors contributing to the pathogenesis and progression of DKD. Sodium-glucose cotransporter 2 inhibitors (SGLT2i), a novel class of antidiabetic agents widely used in clinical settings, may exert a protective effect on podocyte injury, although the underlying mechanisms remain poorly understood. This study uses the streptozotocin (STZ) -induced DKD mouse model to further explore the mechanism by which SGLT2i protect podocytes. The results demonstrated that Canagliflozin (CANA) treatment significantly improved serum creatinine levels, 24-h urinary albumin excretion, and urinary albumin-to-creatinine ratio (UACR) in DKD mice. Additionally, CANA treatment attenuated glomerular and podocyte injury, reducing overall pathological damage. Mechanistically, CANA reduced the expression of key inflammatory markers in the renal cortex of DKD mice, including TXNIP, NLRP3, ASC, caspase-1, IL-1β, IL-18, and GSDMD. These findings suggest that CANA may be an effective therapeutic agent for DKD by inhibiting the TXNIP-NLRP3 inflammasome pathway and preventing podocyte pyroptosis.
期刊介绍:
Inflammation publishes the latest international advances in experimental and clinical research on the physiology, biochemistry, cell biology, and pharmacology of inflammation. Contributions include full-length scientific reports, short definitive articles, and papers from meetings and symposia proceedings. The journal''s coverage includes acute and chronic inflammation; mediators of inflammation; mechanisms of tissue injury and cytotoxicity; pharmacology of inflammation; and clinical studies of inflammation and its modification.