Mostafa D Hassen, Nahla O Mousa, Sara M Radwan, Refaat M Gabre
{"title":"白细胞介素- 17a中和通过调节大鼠NF-κB/NLRP3/Caspase-1/IL-1β信号通路对阿霉素诱导的心脏毒性的改善作用","authors":"Mostafa D Hassen, Nahla O Mousa, Sara M Radwan, Refaat M Gabre","doi":"10.1007/s10753-024-02187-z","DOIUrl":null,"url":null,"abstract":"<p><p>Doxorubicin (DOX) is used as a chemotherapeutic drug for treating cancer. Nevertheless, it causes damage to the heart by activating inflammatory pathways, resulting in cardiotoxicity. Imbalance in cytokine production is a crucial component that might trigger the initiation of inflammatory processes. Inflammatory cytokines could be targeted therapies against cardiovascular diseases (CVDs). Interleukin-17A (IL-17A) is a cytokine that promotes inflammation and stimulates harmful immunological reactions. The objective of the study was to determine the efficacy of secukinumab (SEC), a completely human monoclonal IgG1/κ antibody that targets IL-17A, in ameliorating DOX-induced cardiotoxicity (DIC). We administered 2.5 mg/kg of DOX intraperitoneally to male Wistar rats three times a week for 2 weeks and simultaneously administered 0.9 mg/kg of SEC along with 2.5 mg/kg of DOX injection three times a week for a duration of two weeks. The findings indicated that DOX induced damage to the heart tissue, resulting in a significant rise in indicators of cardiotoxicity (P < 0.001), as well as oxidative stress and inflammation. DIC may have arisen from DOX's activation of the Pyrin domain containing 3 (NLRP3) inflammasome and the nuclear factor kappa beta (NF-κB) pathway. The co-administration of SEC successfully reversed all DOX-induced abnormalities by restoring cardiac functions to their baseline levels, decreasing levels of inflammatory mediators such as IL-17A and interleukin-1β (IL-1β), and improving oxidative stress by reducing levels of malondialdehyde (MDA) and increasing levels of reduced glutathione (GSH). Furthermore, it mitigated the heightened activation of the NF-κB/NLRP3 pathway caused by DOX. This study shows that IL-17A neutralization can prevent DIC by regulating the NF-κB/NLRP3/Caspase-1/IL-1β pathway to be used as potential therapeutic target for CVDs.</p>","PeriodicalId":13524,"journal":{"name":"Inflammation","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"\\\"The Ameliorative Effect of Interleukin-17A Neutralization on Doxorubicin-Induced Cardiotoxicity by Modulating the NF-κB/NLRP3/Caspase-1/IL-1β Signaling Pathway in Rats\\\".\",\"authors\":\"Mostafa D Hassen, Nahla O Mousa, Sara M Radwan, Refaat M Gabre\",\"doi\":\"10.1007/s10753-024-02187-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Doxorubicin (DOX) is used as a chemotherapeutic drug for treating cancer. Nevertheless, it causes damage to the heart by activating inflammatory pathways, resulting in cardiotoxicity. Imbalance in cytokine production is a crucial component that might trigger the initiation of inflammatory processes. Inflammatory cytokines could be targeted therapies against cardiovascular diseases (CVDs). Interleukin-17A (IL-17A) is a cytokine that promotes inflammation and stimulates harmful immunological reactions. The objective of the study was to determine the efficacy of secukinumab (SEC), a completely human monoclonal IgG1/κ antibody that targets IL-17A, in ameliorating DOX-induced cardiotoxicity (DIC). We administered 2.5 mg/kg of DOX intraperitoneally to male Wistar rats three times a week for 2 weeks and simultaneously administered 0.9 mg/kg of SEC along with 2.5 mg/kg of DOX injection three times a week for a duration of two weeks. The findings indicated that DOX induced damage to the heart tissue, resulting in a significant rise in indicators of cardiotoxicity (P < 0.001), as well as oxidative stress and inflammation. DIC may have arisen from DOX's activation of the Pyrin domain containing 3 (NLRP3) inflammasome and the nuclear factor kappa beta (NF-κB) pathway. The co-administration of SEC successfully reversed all DOX-induced abnormalities by restoring cardiac functions to their baseline levels, decreasing levels of inflammatory mediators such as IL-17A and interleukin-1β (IL-1β), and improving oxidative stress by reducing levels of malondialdehyde (MDA) and increasing levels of reduced glutathione (GSH). Furthermore, it mitigated the heightened activation of the NF-κB/NLRP3 pathway caused by DOX. This study shows that IL-17A neutralization can prevent DIC by regulating the NF-κB/NLRP3/Caspase-1/IL-1β pathway to be used as potential therapeutic target for CVDs.</p>\",\"PeriodicalId\":13524,\"journal\":{\"name\":\"Inflammation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inflammation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10753-024-02187-z\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10753-024-02187-z","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
"The Ameliorative Effect of Interleukin-17A Neutralization on Doxorubicin-Induced Cardiotoxicity by Modulating the NF-κB/NLRP3/Caspase-1/IL-1β Signaling Pathway in Rats".
Doxorubicin (DOX) is used as a chemotherapeutic drug for treating cancer. Nevertheless, it causes damage to the heart by activating inflammatory pathways, resulting in cardiotoxicity. Imbalance in cytokine production is a crucial component that might trigger the initiation of inflammatory processes. Inflammatory cytokines could be targeted therapies against cardiovascular diseases (CVDs). Interleukin-17A (IL-17A) is a cytokine that promotes inflammation and stimulates harmful immunological reactions. The objective of the study was to determine the efficacy of secukinumab (SEC), a completely human monoclonal IgG1/κ antibody that targets IL-17A, in ameliorating DOX-induced cardiotoxicity (DIC). We administered 2.5 mg/kg of DOX intraperitoneally to male Wistar rats three times a week for 2 weeks and simultaneously administered 0.9 mg/kg of SEC along with 2.5 mg/kg of DOX injection three times a week for a duration of two weeks. The findings indicated that DOX induced damage to the heart tissue, resulting in a significant rise in indicators of cardiotoxicity (P < 0.001), as well as oxidative stress and inflammation. DIC may have arisen from DOX's activation of the Pyrin domain containing 3 (NLRP3) inflammasome and the nuclear factor kappa beta (NF-κB) pathway. The co-administration of SEC successfully reversed all DOX-induced abnormalities by restoring cardiac functions to their baseline levels, decreasing levels of inflammatory mediators such as IL-17A and interleukin-1β (IL-1β), and improving oxidative stress by reducing levels of malondialdehyde (MDA) and increasing levels of reduced glutathione (GSH). Furthermore, it mitigated the heightened activation of the NF-κB/NLRP3 pathway caused by DOX. This study shows that IL-17A neutralization can prevent DIC by regulating the NF-κB/NLRP3/Caspase-1/IL-1β pathway to be used as potential therapeutic target for CVDs.
期刊介绍:
Inflammation publishes the latest international advances in experimental and clinical research on the physiology, biochemistry, cell biology, and pharmacology of inflammation. Contributions include full-length scientific reports, short definitive articles, and papers from meetings and symposia proceedings. The journal''s coverage includes acute and chronic inflammation; mediators of inflammation; mechanisms of tissue injury and cytotoxicity; pharmacology of inflammation; and clinical studies of inflammation and its modification.