SUCNR1缺乏通过ERK/NF-κB通路调节Kupffer细胞活化和极化减轻小鼠肝缺血再灌注损伤

IF 4.5 2区 医学 Q2 CELL BIOLOGY
Huan Yang, An Wei, Xinting Zhou, Zhiwei Chen, Yiheng Wang
{"title":"SUCNR1缺乏通过ERK/NF-κB通路调节Kupffer细胞活化和极化减轻小鼠肝缺血再灌注损伤","authors":"Huan Yang, An Wei, Xinting Zhou, Zhiwei Chen, Yiheng Wang","doi":"10.1007/s10753-025-02290-9","DOIUrl":null,"url":null,"abstract":"<p><p>Succinate regulates inflammation through its receptor, succinate receptor 1 (SUCNR1). However, the effects of this interaction on Kupffer cell (KC)-driven inflammation during liver ischemia-reperfusion injury (IRI) remain unclear. Herein, we investigated the succinate/SUCNR1 axis in the progression of liver IRI. In this study, succinate levels and SUCNR1 expression were analyzed in mice underwent segmental liver IRI. Sucnr1 deficiency (Sucnr1<sup>-/-</sup>) and Wild-type mice were treated with or without clodronate before liver IRI modeling, and a co-culture system was established to assess the impact of Sucnr1 deficiency in KCs on hepatocyte viability and apoptosis. KC activation status and polarization were determined, in vivo and in vitro. Furthermore, the downstream pathways in regulating KC polarization were investigated. We observed a significant increase in succinate levels in the serum and liver, and SUCNR1 expression in KCs after IRI. Sucnr1 deletion alleviated liver IRI and hepatocyte apoptosis either in vivo or in vitro. However, the aforementioned hepatoprotective effects were abolished by the depletion of KCs with clodronate. Sucnr1 deletion inhibited KC activation and M1 polarization, and dampened proinflammatory cytokine release after liver IRI. In addition, Sucnr1 knockout reversed the increasing phosphorylation of ERK and NF-κB p65 in KCs following liver IRI. The phosphorylation of ERK/NF-κB p65 and M1 polarization in KCs were also inhibited by the SUCNR1 antagonist Compound 4C or ERK inhibitor SCH772984. Together, these findings suggest that SUCNR1 deficiency protects against liver IRI by modulating KC activation and polarization probably through the ERK/NF-κB pathway.</p>","PeriodicalId":13524,"journal":{"name":"Inflammation","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SUCNR1 Deficiency Alleviates Liver Ischemia-Reperfusion Injury by Regulating Kupffer Cell Activation and Polarization Through the ERK/NF-κB Pathway in Mice.\",\"authors\":\"Huan Yang, An Wei, Xinting Zhou, Zhiwei Chen, Yiheng Wang\",\"doi\":\"10.1007/s10753-025-02290-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Succinate regulates inflammation through its receptor, succinate receptor 1 (SUCNR1). However, the effects of this interaction on Kupffer cell (KC)-driven inflammation during liver ischemia-reperfusion injury (IRI) remain unclear. Herein, we investigated the succinate/SUCNR1 axis in the progression of liver IRI. In this study, succinate levels and SUCNR1 expression were analyzed in mice underwent segmental liver IRI. Sucnr1 deficiency (Sucnr1<sup>-/-</sup>) and Wild-type mice were treated with or without clodronate before liver IRI modeling, and a co-culture system was established to assess the impact of Sucnr1 deficiency in KCs on hepatocyte viability and apoptosis. KC activation status and polarization were determined, in vivo and in vitro. Furthermore, the downstream pathways in regulating KC polarization were investigated. We observed a significant increase in succinate levels in the serum and liver, and SUCNR1 expression in KCs after IRI. Sucnr1 deletion alleviated liver IRI and hepatocyte apoptosis either in vivo or in vitro. However, the aforementioned hepatoprotective effects were abolished by the depletion of KCs with clodronate. Sucnr1 deletion inhibited KC activation and M1 polarization, and dampened proinflammatory cytokine release after liver IRI. In addition, Sucnr1 knockout reversed the increasing phosphorylation of ERK and NF-κB p65 in KCs following liver IRI. The phosphorylation of ERK/NF-κB p65 and M1 polarization in KCs were also inhibited by the SUCNR1 antagonist Compound 4C or ERK inhibitor SCH772984. Together, these findings suggest that SUCNR1 deficiency protects against liver IRI by modulating KC activation and polarization probably through the ERK/NF-κB pathway.</p>\",\"PeriodicalId\":13524,\"journal\":{\"name\":\"Inflammation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inflammation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10753-025-02290-9\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10753-025-02290-9","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

琥珀酸盐通过其受体琥珀酸受体1 (SUCNR1)调节炎症。然而,这种相互作用对肝缺血再灌注损伤(IRI)期间Kupffer细胞(KC)驱动的炎症的影响尚不清楚。在此,我们研究了琥珀酸/SUCNR1轴在肝脏IRI进展中的作用。本研究分析了肝段性IRI小鼠的琥珀酸盐水平和SUCNR1表达。在肝脏IRI建模前,分别用或不加氯丙酸处理Sucnr1缺陷(Sucnr1-/-)和野生型小鼠,建立共培养系统,评估KCs中Sucnr1缺陷对肝细胞活力和凋亡的影响。在体内和体外测定KC的激活状态和极化情况。进一步研究了KC极化的下游调控途径。我们观察到IRI后KCs中琥珀酸盐水平和SUCNR1表达显著增加。无论在体内还是体外,缺失Sucnr1均可减轻肝脏IRI和肝细胞凋亡。然而,上述肝保护作用被氯膦酸盐消耗KCs所消除。Sucnr1缺失抑制了KC激活和M1极化,抑制了肝脏IRI后促炎细胞因子的释放。此外,Sucnr1基因敲除逆转了肝脏IRI后KCs中ERK和NF-κB p65磷酸化的增加。SUCNR1拮抗剂Compound 4C或ERK抑制剂SCH772984也能抑制KCs中ERK/NF-κB p65的磷酸化和M1极化。总之,这些发现表明,SUCNR1缺乏可能通过ERK/NF-κB途径通过调节KC激活和极化来防止肝脏IRI。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SUCNR1 Deficiency Alleviates Liver Ischemia-Reperfusion Injury by Regulating Kupffer Cell Activation and Polarization Through the ERK/NF-κB Pathway in Mice.

Succinate regulates inflammation through its receptor, succinate receptor 1 (SUCNR1). However, the effects of this interaction on Kupffer cell (KC)-driven inflammation during liver ischemia-reperfusion injury (IRI) remain unclear. Herein, we investigated the succinate/SUCNR1 axis in the progression of liver IRI. In this study, succinate levels and SUCNR1 expression were analyzed in mice underwent segmental liver IRI. Sucnr1 deficiency (Sucnr1-/-) and Wild-type mice were treated with or without clodronate before liver IRI modeling, and a co-culture system was established to assess the impact of Sucnr1 deficiency in KCs on hepatocyte viability and apoptosis. KC activation status and polarization were determined, in vivo and in vitro. Furthermore, the downstream pathways in regulating KC polarization were investigated. We observed a significant increase in succinate levels in the serum and liver, and SUCNR1 expression in KCs after IRI. Sucnr1 deletion alleviated liver IRI and hepatocyte apoptosis either in vivo or in vitro. However, the aforementioned hepatoprotective effects were abolished by the depletion of KCs with clodronate. Sucnr1 deletion inhibited KC activation and M1 polarization, and dampened proinflammatory cytokine release after liver IRI. In addition, Sucnr1 knockout reversed the increasing phosphorylation of ERK and NF-κB p65 in KCs following liver IRI. The phosphorylation of ERK/NF-κB p65 and M1 polarization in KCs were also inhibited by the SUCNR1 antagonist Compound 4C or ERK inhibitor SCH772984. Together, these findings suggest that SUCNR1 deficiency protects against liver IRI by modulating KC activation and polarization probably through the ERK/NF-κB pathway.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inflammation
Inflammation 医学-免疫学
CiteScore
9.70
自引率
0.00%
发文量
168
审稿时长
3.0 months
期刊介绍: Inflammation publishes the latest international advances in experimental and clinical research on the physiology, biochemistry, cell biology, and pharmacology of inflammation. Contributions include full-length scientific reports, short definitive articles, and papers from meetings and symposia proceedings. The journal''s coverage includes acute and chronic inflammation; mediators of inflammation; mechanisms of tissue injury and cytotoxicity; pharmacology of inflammation; and clinical studies of inflammation and its modification.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信