Biotechnology Journal最新文献

筛选
英文 中文
Construction of a Cell Factory for the Targeted and Efficient Production of Phytosterol to Boldenone in Mycobacterium neoaurum 在新牛磺酸分枝杆菌中构建细胞工厂,定向高效生产植物甾醇和勃地酮。
IF 3.2 3区 生物学
Biotechnology Journal Pub Date : 2024-11-17 DOI: 10.1002/biot.202400489
Bo Zhang, Sifang Zhu, Yi Zhu, Xin Sui, Junping Zhou, Zhiqiang Liu, Yuguo Zheng
{"title":"Construction of a Cell Factory for the Targeted and Efficient Production of Phytosterol to Boldenone in Mycobacterium neoaurum","authors":"Bo Zhang,&nbsp;Sifang Zhu,&nbsp;Yi Zhu,&nbsp;Xin Sui,&nbsp;Junping Zhou,&nbsp;Zhiqiang Liu,&nbsp;Yuguo Zheng","doi":"10.1002/biot.202400489","DOIUrl":"10.1002/biot.202400489","url":null,"abstract":"<div>\u0000 \u0000 <p>Boldenone (BD), a protein anabolic hormone, is commonly used to treat muscle damage, osteoporosis, and off-season muscle building in athletes. Traditional BD synthesis methods rely on chemical processes, which are costly and environmentally impactful. Therefore, developing a more sustainable and economical biosynthetic pathway is crucial for BD production. This study aimed to achieve efficient production of BD. Firstly, the catalytic performance of 17β-hydroxysteroid dehydrogenase and 3-ketosteroid-Δ<sup>1</sup>-dehydrogenase was improved through enzyme engineering, and their expression in the new strain of <i>Mycobacterium neoaurum</i> was enhanced using metabolic engineering. These improvements significantly increased BD production to 4.05 g/L, with a significant decrease in by-product generation. To further increase the yield, a multi-enzyme fusion expression system was constructed, and a key cell wall gene <i>kasB</i> was knocked out, resulting in a spatial-time yield of BD reaching 1.02 g/(L·d). Subsequent optimization of the transformation system further increased the BD production to 5.56 g/L, with a spatiotemporal yield of 1.39 g/(L·d). The green biosynthetic route of phytosterol one-step conversion to BD developed in this study lays the foundation for industrial production.</p>\u0000 </div>","PeriodicalId":134,"journal":{"name":"Biotechnology Journal","volume":"19 11","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
L-Asparaginase from Lachancea Thermotolerans: Effect of Lys99Ala on Enzyme Performance and in vitro Antileukemic Efficacy 来自 Lachancea Thermotolerans 的 L-天冬酰胺酶:Lys99Ala 对酶性能和体外抗白血病效力的影响
IF 3.2 3区 生物学
Biotechnology Journal Pub Date : 2024-11-17 DOI: 10.1002/biot.202400507
Berin Yilmazer Aktar, Arzu Aysan, Ossi Turunen, Tamer Yağci, Hüseyin Avni Solğun, Barış Binay
{"title":"L-Asparaginase from Lachancea Thermotolerans: Effect of Lys99Ala on Enzyme Performance and in vitro Antileukemic Efficacy","authors":"Berin Yilmazer Aktar,&nbsp;Arzu Aysan,&nbsp;Ossi Turunen,&nbsp;Tamer Yağci,&nbsp;Hüseyin Avni Solğun,&nbsp;Barış Binay","doi":"10.1002/biot.202400507","DOIUrl":"10.1002/biot.202400507","url":null,"abstract":"<div>\u0000 \u0000 <p>L-asparaginases (EC 3.5.1.1) are amidohydrolase enzymes that predominantly catalyze conversion of L-asparagine to L-aspartic acid and ammonia. In addition, some exhibit secondary L-glutaminase activity. <i>Escherichia coli</i> and <i>Erwinia chrysanthemi</i> L-asparaginases are widely used in the pharmaceutical industry to produce therapeutically important compounds. In the therapeutic use of enzymes, bacterial L-asparaginases can trigger immune responses, leading to a high rate of adverse effects that diminish the effectiveness of the treatment. This situation has forced scientists to search for promising L-asparaginases from new sources. Yeast L-asparaginases could be useful in reducing toxicity and enhancing efficacy but they have been poorly studied to date. Here, we characterized the yeast <i>Lachancea thermotolerans</i> L-asparaginase (<i>Lt</i>ASNase) purified by affinity chromatography. It has a specific activity of 313.8 U/mg and a high k<sub>cat</sub> value (312.4 s). We demonstrated through a semi-rational design that the mutations of Lys99 show varying effects on catalytic activity, with the Lys99Ala mutant increasing specific activity 3.3-fold. Furthermore, the in vitro antileukemic activity of the non-formulated form of Lys99Ala <i>Lt</i>ASNase was evaluated against SUP-B15 and REH cell lines. The results demonstrated that <i>Lt</i>ASNase exhibits significant antileukemic potential, comparable to commercial type II bacterial enzymes. The understanding of the mutant L-asparaginases examined in this study will significantly contribute to the development of new and more effective yeast-derived asparaginases.</p>\u0000 </div>","PeriodicalId":134,"journal":{"name":"Biotechnology Journal","volume":"19 11","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multifunctional PAMAM Dendrimers Carrying SAHA, 5-FU, and a Therapeutic Gene for Targeted Co-Delivery Toward Colorectal Cancer Cells 携带 SAHA、5-FU 和治疗基因的多功能 PAMAM 树枝状聚合物,可对结直肠癌细胞进行靶向联合给药。
IF 3.2 3区 生物学
Biotechnology Journal Pub Date : 2024-11-17 DOI: 10.1002/biot.202400362
Bünyamin Bulkurcuoğlu, Mustafa Ulvi Gürbüz, Silvia Tyciakova, Kristina Pavlov, Nikoleta Mojzesova, Miroslava Matuskova, Metin Tülü, Şebnem Erçelen
{"title":"Multifunctional PAMAM Dendrimers Carrying SAHA, 5-FU, and a Therapeutic Gene for Targeted Co-Delivery Toward Colorectal Cancer Cells","authors":"Bünyamin Bulkurcuoğlu,&nbsp;Mustafa Ulvi Gürbüz,&nbsp;Silvia Tyciakova,&nbsp;Kristina Pavlov,&nbsp;Nikoleta Mojzesova,&nbsp;Miroslava Matuskova,&nbsp;Metin Tülü,&nbsp;Şebnem Erçelen","doi":"10.1002/biot.202400362","DOIUrl":"10.1002/biot.202400362","url":null,"abstract":"<p>A promising approach to treat colorectal cancer (CRC) involves combining chemotherapy, epigenetics, and gene therapy to combat drug resistance. Multifunctional nanocarriers have emerged as a valuable tool for targeted CRC therapy. By delivering multiple treatments directly to cancer cells, these nanocarriers offer the potential for improved outcomes and reduced side effects. PAMAM-based dendrimers were functionalized with a unique combination of folic acid, 5-FU, SAHA, and plasmid DNA pCIneoGFP for targeted delivery to CRC cells. Biophysical characterizations of therapeutic loaded dendrimers and their complexes with pCIneoGFP were performed by: dynamic light scattering, fluorescence spectroscopy, and gel electrophoresis. Further, cellular analyses of dendriplexes demonstrated high transfection efficiency and anticancer activity on HCT 116 and HT-29 cell lines. We have successfully developed a multifunctional nanocarrier platform based on PAMAM dendrimers, offering a promising tool for targeted combination therapy of CRC.</p>","PeriodicalId":134,"journal":{"name":"Biotechnology Journal","volume":"19 11","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/biot.202400362","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Issue Information: Biotechnology Journal 11/2024 发行信息:生物技术期刊 11/2024
IF 3.2 3区 生物学
Biotechnology Journal Pub Date : 2024-11-08 DOI: 10.1002/biot.202470111
{"title":"Issue Information: Biotechnology Journal 11/2024","authors":"","doi":"10.1002/biot.202470111","DOIUrl":"https://doi.org/10.1002/biot.202470111","url":null,"abstract":"","PeriodicalId":134,"journal":{"name":"Biotechnology Journal","volume":"19 11","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/biot.202470111","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142664610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Experimental and Modeling Approach to Study Tangential Flow Filtration Performance for mRNA Drug Substance Purification 研究用于 mRNA 药物物质纯化的切向流过滤性能的实验和建模方法。
IF 3.2 3区 生物学
Biotechnology Journal Pub Date : 2024-11-08 DOI: 10.1002/biot.202400473
Ehsan Nourafkan, Charlotte Kenyon, Adithya Nair, Kate A. Loveday, Emma N. Welbourne, Min Tao, Mahdi Ahmed, Joseph Middleton, Mark J. Dickman, Solomon F. Brown, Mabrouka Maamra, Joan Cordiner, Zoltán Kis
{"title":"An Experimental and Modeling Approach to Study Tangential Flow Filtration Performance for mRNA Drug Substance Purification","authors":"Ehsan Nourafkan,&nbsp;Charlotte Kenyon,&nbsp;Adithya Nair,&nbsp;Kate A. Loveday,&nbsp;Emma N. Welbourne,&nbsp;Min Tao,&nbsp;Mahdi Ahmed,&nbsp;Joseph Middleton,&nbsp;Mark J. Dickman,&nbsp;Solomon F. Brown,&nbsp;Mabrouka Maamra,&nbsp;Joan Cordiner,&nbsp;Zoltán Kis","doi":"10.1002/biot.202400473","DOIUrl":"10.1002/biot.202400473","url":null,"abstract":"<p>Following the recent COVID-19 pandemic, mRNA manufacturing processes are being actively developed and optimized to produce the next generation of mRNA vaccines and therapeutics. Herein, the performance of the tangential flow filtration (TFF) was evaluated for high-recovery, and high-purity separation of mRNA from unreacted nucleoside triphosphates (NTPs) from the in vitro transcription (IVT) reaction mixture. For the first time, the fouling model was successfully validated with TFF experimental data to describe the adsorption of mRNA on filtration membrane. The fouling model enables monitoring of the mRNA purification processes, designing an appropriate strategy for filter clean-up, replacing the column at the right time and reducing the process cost. Recovery greater than 70% mRNA without degradation was obtained by implementing a capacity load of ∼19 g/m<sup>2</sup>, &lt;2.5 psi transmembrane pressure (TMP) and feed flux of 300 LMH. This approach also enables the purification of multiple mRNA drug substance sequences for the treatment of a wide range of different diseases.</p>","PeriodicalId":134,"journal":{"name":"Biotechnology Journal","volume":"19 11","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/biot.202400473","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineering Regioselectivity of P450 BM3 Enables the Biosynthesis of Murideoxycholic Acid by 6β-Hydroxylation of Lithocholic Acid 对 P450 BM3 的区域选择性进行工程改造,通过对石胆酸进行 6β 羟基化来实现 Murideoxycholic Acid 的生物合成。
IF 3.2 3区 生物学
Biotechnology Journal Pub Date : 2024-11-08 DOI: 10.1002/biot.202400518
Fangzhi Deng, Zhenru Zhou, Zhen Du, Mohamed Mohany, Qunyue Wu, Weiyang Liang, Lei Zhang, Shan Li
{"title":"Engineering Regioselectivity of P450 BM3 Enables the Biosynthesis of Murideoxycholic Acid by 6β-Hydroxylation of Lithocholic Acid","authors":"Fangzhi Deng,&nbsp;Zhenru Zhou,&nbsp;Zhen Du,&nbsp;Mohamed Mohany,&nbsp;Qunyue Wu,&nbsp;Weiyang Liang,&nbsp;Lei Zhang,&nbsp;Shan Li","doi":"10.1002/biot.202400518","DOIUrl":"10.1002/biot.202400518","url":null,"abstract":"<div>\u0000 \u0000 <p>Murideoxycholic acid (MDCA), as a significant secondary bile acid derived from the metabolism of α/β-muricholic acid in rodents, is an important component in maintaining the bile acid homeostasis. However, the biosynthesis of MDCA remains a challenging task. Here, we present the development of cytochrome P450 monooxygenase CYP102A1 (P450 BM3) from <i>Bacillus megaterium</i>, employing semi-rational protein engineering technique. Following three rounds of mutagenesis, a triple variant (T260G/G328A/L82V) has been discovered that proficiently catalyzes the 6β-hydroxylation of lithocholic acid (LCA), thereby generating MDCA with an impressive 8.5-fold increase in yield compared to the template P450 BM3 mutant. The MDCA selectivity has been also promoted from 62.0% to 96.3%. This biocatalyst introduces a novel approach for the biosynthesis of MDCA from LCA. Furthermore, molecular docking and dynamics simulations have been employed to unravel the molecular mechanisms underlying the enhanced LCA conversion and MDCA selectivity.</p>\u0000 </div>","PeriodicalId":134,"journal":{"name":"Biotechnology Journal","volume":"19 11","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genome-Scale Modeling of CHO Cells Unravel the Critical Role of Asparagine in Cell Culture Feed Media CHO 细胞基因组规模建模揭示了天冬酰胺在细胞培养基中的关键作用。
IF 3.2 3区 生物学
Biotechnology Journal Pub Date : 2024-11-08 DOI: 10.1002/biot.202400072
Kuin Tian Pang, Yi Fan Hong, Fumi Shozui, Shunpei Furomitsu, Matthew Myint, Ying Swan Ho, Yaron R. Silberberg, Ian Walsh, Meiyappan Lakshmanan
{"title":"Genome-Scale Modeling of CHO Cells Unravel the Critical Role of Asparagine in Cell Culture Feed Media","authors":"Kuin Tian Pang,&nbsp;Yi Fan Hong,&nbsp;Fumi Shozui,&nbsp;Shunpei Furomitsu,&nbsp;Matthew Myint,&nbsp;Ying Swan Ho,&nbsp;Yaron R. Silberberg,&nbsp;Ian Walsh,&nbsp;Meiyappan Lakshmanan","doi":"10.1002/biot.202400072","DOIUrl":"10.1002/biot.202400072","url":null,"abstract":"<div>\u0000 \u0000 <p>Amino acids, including asparagine, aspartate, glutamine, and glutamate, play important roles in purine and pyrimidine biosynthesis as well as serve as anaplerotic sources fueling the tricarboxylic acid (TCA) cycle for mitochondrial energy generation. Despite extensive studies on glutamine and glutamate in CHO cell cultures, the roles of asparagine and aspartate, especially in feed media, remain underexplored. In this study, we utilized a CHO genome scale model to first deeply characterize the intracellular metabolic states of CHO cells cultured in different combinations of basal and feed media to understand the traits of asparagine/aspartate-dependent and glutamate-dependent feeds. Subsequently, we identified the critical role of asparagine and aspartate in the feed media as anaplerotic sources and conducted in silico simulations to ascertain their optimal ratios to improve cell culture performance. Finally, based on the model simulations, we reformulated the feed media by tailoring the concentrations of asparagine and aspartate. Our experimental data reveal a CHO cell preference for asparagine compared with aspartate, and thus maintaining an optimal ratio of these amino acids is a key factor for achieving optimal CHO cell culture performance in biopharmaceutical production.</p>\u0000 </div>","PeriodicalId":134,"journal":{"name":"Biotechnology Journal","volume":"19 11","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Real-Time Adaptive Inline Acidification Enhances Continuous pH Control for Viral Inactivation 实时自适应内联酸化增强了病毒灭活的连续 pH 值控制。
IF 3.2 3区 生物学
Biotechnology Journal Pub Date : 2024-11-08 DOI: 10.1002/biot.202400456
Jia Sheng Zach Lee, Tan Dai Nguyen, Zi Ying Zheng, Wei Zhang, Dan Liu
{"title":"Real-Time Adaptive Inline Acidification Enhances Continuous pH Control for Viral Inactivation","authors":"Jia Sheng Zach Lee,&nbsp;Tan Dai Nguyen,&nbsp;Zi Ying Zheng,&nbsp;Wei Zhang,&nbsp;Dan Liu","doi":"10.1002/biot.202400456","DOIUrl":"10.1002/biot.202400456","url":null,"abstract":"<div>\u0000 \u0000 <p>Existing low pH viral inactivation methods for continuous downstream processing of biologics typically rely on predictive models to estimate the necessary pH adjustments. However, these methods are of limited use during the process development stage due to the dynamic nature of capture chromatography, where batch variations can alter the eluted protein titer. This study introduces an inline viral inactivation system (IVIS) that utilizes real-time adaptive control and inline sensor readings to precisely regulate the pH manipulation for inline acidification and continuous viral inactivation. The IVIS, which includes a coiled flow inversion reactor (CFIR), is integrated with a multicolumn capture chromatography system to demonstrate a fully continuous process from protein capture chromatography to inline pH manipulation. The system achieved precise inline pH manipulation within ±0.15 and a narrow residence time distribution of 13.5 min with a relative width of 0.7. The introduction of real-time inline pH manipulation with the IVIS signifies a notable advancement in managing critical process parameters (CPPs) and ensuring consistent product quality across varied production environments for continuous downstream bioprocessing.</p>\u0000 </div>","PeriodicalId":134,"journal":{"name":"Biotechnology Journal","volume":"19 11","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chromatin Accessibility Plays an Important Epigenetic Role on Antibody Expression From CMV Promoter and DNA Elements Flanking the CHO TI Host Landing-Pad CMV启动子和CHO TI宿主着陆垫侧翼DNA元件的染色质可及性对抗体表达起着重要的表观遗传作用
IF 3.2 3区 生物学
Biotechnology Journal Pub Date : 2024-10-29 DOI: 10.1002/biot.202400487
Kavya Ganapathy, Andrew McKay, Steffen Durinck, Minyi Shi, Kristel Dorighi, Cynthia Lam, Yuxin Liang, Amy Shen, Gavin Barnard, Shahram Misaghi
{"title":"Chromatin Accessibility Plays an Important Epigenetic Role on Antibody Expression From CMV Promoter and DNA Elements Flanking the CHO TI Host Landing-Pad","authors":"Kavya Ganapathy,&nbsp;Andrew McKay,&nbsp;Steffen Durinck,&nbsp;Minyi Shi,&nbsp;Kristel Dorighi,&nbsp;Cynthia Lam,&nbsp;Yuxin Liang,&nbsp;Amy Shen,&nbsp;Gavin Barnard,&nbsp;Shahram Misaghi","doi":"10.1002/biot.202400487","DOIUrl":"10.1002/biot.202400487","url":null,"abstract":"<div>\u0000 \u0000 <p>Targeted integration (TI) Chinese hamster ovary (CHO) platforms are commonly used for protein expression. However, the impact of epigenetic modifications on protein expression in TI cell lines remains elusive since almost all the epigenetic studies focus on random integration (RI) of the gene of interest and only within the promoter region. To address the impact of epigenetic modifications on TI CHO cells, we utilized a standard mAb-1 to identify and characterize TI clones with the same transgene copy numbers but different levels of transgene transcription and titer. Surprisingly, while CMV promoters were not methylated and histone acetylation/methylation was present, these epigenetic markers did not trend with mRNA transcription and protein expression in our TI model. Instead, ATAC-seq data analysis revealed that differences in chromatin accessibility within the TI site could be a major factor impacting these observed differences. However, neither chromatin accessibility nor histone acetylation/methylation profiles in early cultures were predictive of high-expressing clones early during the CLD process. Finally, modulation of the histone profiles (H3K27ac and H3K4me3) at the CMV promoters within the TI integration site using dCas9 fusion proteins was not effective in further increasing mAb titers which could have been likely due to interference of the dCas9 fusion proteins with transcription from the CMV promoters. Overall, our data suggests increasing chromatin accessibility at the TI site is the most effective way to increase mRNA transcription and hence, productivity in TI cell lines.</p>\u0000 </div>","PeriodicalId":134,"journal":{"name":"Biotechnology Journal","volume":"19 10","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142542311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation of Thermosensitive Lignocellulose Hollow Fiber Membrane Grafted With PNIPAAm and Its Application as a Cell Culture Carrier in a RSOC Dynamic Culture 接枝 PNIPAAm 的热敏木质纤维素中空纤维膜的制备及其在 RSOC 动态培养中作为细胞培养载体的应用
IF 3.2 3区 生物学
Biotechnology Journal Pub Date : 2024-10-29 DOI: 10.1002/biot.202400444
Jiaqi Liu, Hao Wang, Zijiao Feng, Hailin Ma, Yuen Yee Cheng, Jie Xu, Yanchun Guan, Shuo Wu, Kedong Song
{"title":"Preparation of Thermosensitive Lignocellulose Hollow Fiber Membrane Grafted With PNIPAAm and Its Application as a Cell Culture Carrier in a RSOC Dynamic Culture","authors":"Jiaqi Liu,&nbsp;Hao Wang,&nbsp;Zijiao Feng,&nbsp;Hailin Ma,&nbsp;Yuen Yee Cheng,&nbsp;Jie Xu,&nbsp;Yanchun Guan,&nbsp;Shuo Wu,&nbsp;Kedong Song","doi":"10.1002/biot.202400444","DOIUrl":"10.1002/biot.202400444","url":null,"abstract":"<p>Currently, the cells, which are urgently required for large-scale application in biomedical-related fields, harvested by traditional trypsin digestion are usually subject to repeated digestion, leading to a reduction of cell activity. In this study, poly (N-isopropylacrylamide) (PNIPAAm) was grafted onto the lignocellulose hollow fiber membranes (HFMs) with cerium ammonium nitrate (CAN) as the initiator to prepare thermosensitive HFMs, which was combined with a rotation system of culture (RSOC) to achieve dynamic culture and non-destructive harvesting of cells from the HFMs. The results of ATR-FTIR, elemental analysis, and SEM confirmed the successful preparation of PNIPAAm-grafted-HFMs, which also showed good biocompatibility to apply for cell culture carriers. In cooling detachment, the HFMs-0.01 group could completely detach the cells within 1 h with a cell separation efficiency of more than 90%. The laminin (LN) and fibronectin (FN) harvested by cooling detachment of P8 generation PC12 cells reached 0.0531 ± 0.0032 and 2.5045 ± 0.0001 pg/cell, respectively, which were significantly higher than that by trypsin digestion. In addition, the cells on the thermosensitive HFMs proliferated fastest in RSOC at 30 rpm with higher glucose consumption and lactate metabolism than in static conditions. Moreover, the cells that had dynamic detachment at 20 rpm had the highest cell density and activity. Therefore, the thermosensitive HFMs could be applied as cell culture carriers in RSOC for cell culturing at 30 rpm and harvesting at 20 rpm, which would provide considerable potential for large-scale cell culture in vitro.</p>","PeriodicalId":134,"journal":{"name":"Biotechnology Journal","volume":"19 10","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142542313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信