Yu Wang, Adam Phelps, Ashlyn Godbehere, Branndon Evans, Chinatsu Takizawa, Grace Chinen, Harvir Singh, Zhiqing Fang, Zhi-Yan Du
{"title":"用CRISPR技术革新农业:应用、挑战和未来展望。","authors":"Yu Wang, Adam Phelps, Ashlyn Godbehere, Branndon Evans, Chinatsu Takizawa, Grace Chinen, Harvir Singh, Zhiqing Fang, Zhi-Yan Du","doi":"10.1002/biot.70113","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>CRISPR technologies are rapidly transforming agriculture by enabling precise and programmable modifications across a wide range of organisms. This review provides an overview of CRISPR applications in crops, livestock, aquaculture, and microbial systems, highlighting key advances in sustainable agriculture. In crops, CRISPR has accelerated the improvement of traits such as drought tolerance, nutrient efficiency, and pathogen resistance. In livestock and aquaculture, CRISPR has enabled disease-resistant pigs and poultry, hornless cattle, and fast-growing, stress-tolerant fish. Engineered microbes are also being leveraged to enhance nitrogen fixation and reduce input reliance. We examine the evolution of CRISPR tools, such as base and prime editing, multiplex editing, and epigenome modulation, that expand precision and control beyond traditional gene knockouts. These innovations offer significant advantages over conventional breeding, yet challenges remain, including off-target effects, delivery efficiency, and regulatory variability across countries. The review also explores emerging directions such as novel Cas variants and AI-integrated breeding platforms for high-throughput trait discovery. Together, these developments demonstrate the transformative potential of CRISPR technology to reshape agriculture, not only by enhancing productivity and resilience but also by reducing environmental impacts. With responsible implementation, CRISPR-enabled innovations are well-positioned to support global food security and sustainability targets by 2050.</p>\n </div>","PeriodicalId":134,"journal":{"name":"Biotechnology Journal","volume":"20 9","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revolutionizing Agriculture With CRISPR Technology: Applications, Challenges, and Future Perspectives\",\"authors\":\"Yu Wang, Adam Phelps, Ashlyn Godbehere, Branndon Evans, Chinatsu Takizawa, Grace Chinen, Harvir Singh, Zhiqing Fang, Zhi-Yan Du\",\"doi\":\"10.1002/biot.70113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>CRISPR technologies are rapidly transforming agriculture by enabling precise and programmable modifications across a wide range of organisms. This review provides an overview of CRISPR applications in crops, livestock, aquaculture, and microbial systems, highlighting key advances in sustainable agriculture. In crops, CRISPR has accelerated the improvement of traits such as drought tolerance, nutrient efficiency, and pathogen resistance. In livestock and aquaculture, CRISPR has enabled disease-resistant pigs and poultry, hornless cattle, and fast-growing, stress-tolerant fish. Engineered microbes are also being leveraged to enhance nitrogen fixation and reduce input reliance. We examine the evolution of CRISPR tools, such as base and prime editing, multiplex editing, and epigenome modulation, that expand precision and control beyond traditional gene knockouts. These innovations offer significant advantages over conventional breeding, yet challenges remain, including off-target effects, delivery efficiency, and regulatory variability across countries. The review also explores emerging directions such as novel Cas variants and AI-integrated breeding platforms for high-throughput trait discovery. Together, these developments demonstrate the transformative potential of CRISPR technology to reshape agriculture, not only by enhancing productivity and resilience but also by reducing environmental impacts. With responsible implementation, CRISPR-enabled innovations are well-positioned to support global food security and sustainability targets by 2050.</p>\\n </div>\",\"PeriodicalId\":134,\"journal\":{\"name\":\"Biotechnology Journal\",\"volume\":\"20 9\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/biot.70113\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/biot.70113","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Revolutionizing Agriculture With CRISPR Technology: Applications, Challenges, and Future Perspectives
CRISPR technologies are rapidly transforming agriculture by enabling precise and programmable modifications across a wide range of organisms. This review provides an overview of CRISPR applications in crops, livestock, aquaculture, and microbial systems, highlighting key advances in sustainable agriculture. In crops, CRISPR has accelerated the improvement of traits such as drought tolerance, nutrient efficiency, and pathogen resistance. In livestock and aquaculture, CRISPR has enabled disease-resistant pigs and poultry, hornless cattle, and fast-growing, stress-tolerant fish. Engineered microbes are also being leveraged to enhance nitrogen fixation and reduce input reliance. We examine the evolution of CRISPR tools, such as base and prime editing, multiplex editing, and epigenome modulation, that expand precision and control beyond traditional gene knockouts. These innovations offer significant advantages over conventional breeding, yet challenges remain, including off-target effects, delivery efficiency, and regulatory variability across countries. The review also explores emerging directions such as novel Cas variants and AI-integrated breeding platforms for high-throughput trait discovery. Together, these developments demonstrate the transformative potential of CRISPR technology to reshape agriculture, not only by enhancing productivity and resilience but also by reducing environmental impacts. With responsible implementation, CRISPR-enabled innovations are well-positioned to support global food security and sustainability targets by 2050.
Biotechnology JournalBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
8.90
自引率
2.10%
发文量
123
审稿时长
1.5 months
期刊介绍:
Biotechnology Journal (2019 Journal Citation Reports: 3.543) is fully comprehensive in its scope and publishes strictly peer-reviewed papers covering novel aspects and methods in all areas of biotechnology. Some issues are devoted to a special topic, providing the latest information on the most crucial areas of research and technological advances.
In addition to these special issues, the journal welcomes unsolicited submissions for primary research articles, such as Research Articles, Rapid Communications and Biotech Methods. BTJ also welcomes proposals of Review Articles - please send in a brief outline of the article and the senior author''s CV to the editorial office.
BTJ promotes a special emphasis on:
Systems Biotechnology
Synthetic Biology and Metabolic Engineering
Nanobiotechnology and Biomaterials
Tissue engineering, Regenerative Medicine and Stem cells
Gene Editing, Gene therapy and Immunotherapy
Omics technologies
Industrial Biotechnology, Biopharmaceuticals and Biocatalysis
Bioprocess engineering and Downstream processing
Plant Biotechnology
Biosafety, Biotech Ethics, Science Communication
Methods and Advances.