Immunogenetics最新文献

筛选
英文 中文
A novel missense mutation in the AIRE gene underlying autoimmune polyglandular syndrome type 1. 一种新的AIRE基因错义突变导致自身免疫性多腺综合征1型。
IF 2.9 4区 医学
Immunogenetics Pub Date : 2024-02-01 Epub Date: 2023-11-30 DOI: 10.1007/s00251-023-01324-6
Susana Vitozzi, Silvia Graciela Correa, Alejandro Lozano, Eduardo Jorge Fernández, Rodrigo Quiroga
{"title":"A novel missense mutation in the AIRE gene underlying autoimmune polyglandular syndrome type 1.","authors":"Susana Vitozzi, Silvia Graciela Correa, Alejandro Lozano, Eduardo Jorge Fernández, Rodrigo Quiroga","doi":"10.1007/s00251-023-01324-6","DOIUrl":"10.1007/s00251-023-01324-6","url":null,"abstract":"<p><p>The immune regulator gene AIRE plays an essential role in the establishment of immune tolerance and the prevention of autoimmunity. This transcription factor plays a critical role in promoting self-tolerance in the thymus by regulating the expression of a large number of self-antigens that share the common feature of being tissue-restricted in their expression pattern in the periphery. Dysfunction of AIRE in humans causes a rare disease, autoimmune polyglandular syndrome type 1 (APS1), characterized by an autoimmune response against peripheral tissues, particularly endocrine tissues. Although a few dominant mutations have been described, the inactivation of AIRE is usually caused by recessive mutations. Recent data suggests that alterations in AIRE function contribute not only to APS1 but also to more common forms of autoimmune disease. Here, we present a previously unreported missense mutation (NM_000383.2:c.260 T > C) in exon 2 of the AIRE gene, predicted to cause the substitution (p.(Leu87Pro)) in the CARD domain of the AIRE protein. When inherited in conjunction with another dysfunctional AIRE allele, this mutation was associated with immune dysregulation in a pediatric patient. The presence of hypergammaglobulinemia, malabsorption syndrome, ectodermal dysplasia, mucocutaneous candidiasis, vitiligo, and hypothyroidism as well as the presence of multiple autoantibodies allowed us to confirm an APS1 diagnosis.</p>","PeriodicalId":13446,"journal":{"name":"Immunogenetics","volume":" ","pages":"69-74"},"PeriodicalIF":2.9,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138459739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The COVID-19 inflammation and high mortality mechanism trigger COVID-19 炎症和高死亡率机制的触发因素
IF 3.2 4区 医学
Immunogenetics Pub Date : 2023-12-08 DOI: 10.1007/s00251-023-01326-4
Samuel Stróż, Piotr Kosiorek, Anna Stasiak-Barmuta
{"title":"The COVID-19 inflammation and high mortality mechanism trigger","authors":"Samuel Stróż, Piotr Kosiorek, Anna Stasiak-Barmuta","doi":"10.1007/s00251-023-01326-4","DOIUrl":"https://doi.org/10.1007/s00251-023-01326-4","url":null,"abstract":"<p>The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lasted from March 2020 to May 2023, infecting over 689 million and causing 6.9 million deaths globally. SARS-CoV-2 enters human cells via the spike protein binding to ACE2 receptors, leading to viral replication and an exaggerated immune response characterized by a “cytokine storm.” This review analyzes the COVID-19 pathogenesis, strains, risk factors for severe disease, and vaccine types and effectiveness. A systematic literature search for 2020–2023 was conducted. Results show the cytokine storm underlies COVID-19 pathogenesis, causing multiorgan damage. Key viral strains include Alpha, Beta, Gamma, Delta, and Omicron, differing in transmissibility, disease severity, and vaccine escape. Risk factors for severe COVID-19 include older age, obesity, and comorbidities. mRNA, viral vector, and inactivated vaccines effectively prevent hospitalization and death, although new variants exhibit some vaccine escape. Ongoing monitoring of emerging strains and vaccine effectiveness is warranted. This review provides updated information on COVID-19 pathogenesis, viral variants, risk factors, and vaccines to inform public health strategies for containment and treatment.</p>","PeriodicalId":13446,"journal":{"name":"Immunogenetics","volume":"6 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138552504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genomic view of the origins of cell-mediated immunity. 细胞介导免疫起源的基因组学观点。
IF 2.9 4区 医学
Immunogenetics Pub Date : 2023-12-01 Epub Date: 2023-09-22 DOI: 10.1007/s00251-023-01319-3
Morgan E Janes, Allison Kinlein, Martin F Flajnik, Louis Du Pasquier, Yuko Ohta
{"title":"Genomic view of the origins of cell-mediated immunity.","authors":"Morgan E Janes, Allison Kinlein, Martin F Flajnik, Louis Du Pasquier, Yuko Ohta","doi":"10.1007/s00251-023-01319-3","DOIUrl":"10.1007/s00251-023-01319-3","url":null,"abstract":"<p><p>NKp30 is an activating natural killer cell receptor (NKR) with a single-exon variable (VJ)-type immunoglobulin superfamily (IgSF) domain. Such VJ-IgSF domains predate the emergence of the antigen receptors (immunoglobulin and T cell receptor), which possess the same domain but undergo gene rearrangement. NCR3, the gene encoding NKp30, is present in jawed vertebrates from sharks to mammals; thus, unlike most NKR that are highly divergent among vertebrate taxa, NKp30 is uniquely conserved. We previously hypothesized that an ancestral NCR3 gene was encoded in the proto-major histocompatibility complex (MHC), the region where many immune-related genes have accumulated. Herein, we searched in silico databases to identify NCR3 paralogues and examined their genomic locations. We found a paralogue, NCR3H, in many vertebrates but was lost in mammals. Additionally, we identified a set of voltage-gated sodium channel beta (SCNB) genes as NCR3-distantly-related genes. Like NCR3, both NCR3H and SCNB proteins contain a single VJ-IgSF domain followed by a transmembrane region. These genes map to MHC paralogous regions, originally described in an invertebrate, along with genes encoding cell adhesion molecules involved in NK cell recognition networks. Other genes having no obvious relationship to immunity also map to these paralogous regions. These gene complexes were traced to several invertebrates, suggesting that the foundation of these cellular networks emerged before the genome-wide duplications in early gnathostome history. Here, we propose that this ancestral region was involved in cell-mediated immunity prior to the emergence of adaptive immunity and that NCR3 piggybacked onto this primordial complex, heralding the emergence of vertebrate NK cell/T cells.</p>","PeriodicalId":13446,"journal":{"name":"Immunogenetics","volume":" ","pages":"479-493"},"PeriodicalIF":2.9,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11019866/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41133594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Macroevolution of avian T cell receptor C segments using genomic data. 使用基因组数据的鸟类T细胞受体C片段的宏观进化。
IF 2.9 4区 医学
Immunogenetics Pub Date : 2023-12-01 Epub Date: 2023-10-07 DOI: 10.1007/s00251-023-01322-8
Chunhong Liang, Lin Sun, Ying Zhu, Ayong Zhao, Hongyi Liu, Ke He
{"title":"Macroevolution of avian T cell receptor C segments using genomic data.","authors":"Chunhong Liang, Lin Sun, Ying Zhu, Ayong Zhao, Hongyi Liu, Ke He","doi":"10.1007/s00251-023-01322-8","DOIUrl":"10.1007/s00251-023-01322-8","url":null,"abstract":"<p><p>All jawed vertebrates have four T cell receptor (TCR) chains expressed by thymus-derived lymphocytes that play a significant role in animal immune defense. However, avian TCR studies have been limited to a few species, although their co-functional major histocompatibility complexes (MHCs) have been studied for decades, showing various copy numbers and polymorphisms. Here, using public genome data, we characterized the copy numbers, the phylogenic relationship and selection of T cell receptor complex (TCR-C) segments, and the genomic organization of TCR loci across birds. Various numbers of C segments were found in the TCRα/TCRδ, TCRβ, and TCRγ loci, and phylogenetic analysis reflected both ancient gene duplication events (two Cβ segments and Cδ segments divergent into CδI and CδII) and contemporary evolution (lineage-specific and species-specific characteristics). Most passerines lack CδII segments and a second TRD locus, except Meliphagidae and Maluridae. A relatively stable structure was verified in four TCR loci of birds, except for the arrangement of V segment groups. In this study, we explored the phylogenetic relationships of TCR-C segments across avians for the first time. We inferred gene duplication and loss events during the evolution process. The finding of diverse TCR germline repertoires provides a better understanding of the immune systems of birds.</p>","PeriodicalId":13446,"journal":{"name":"Immunogenetics","volume":" ","pages":"531-541"},"PeriodicalIF":2.9,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41121179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative genomics of the T cell receptor μ locus in marsupials and monotremes. 有袋动物和单孔目动物T细胞受体μ基因座的比较基因组学。
IF 2.9 4区 医学
Immunogenetics Pub Date : 2023-12-01 Epub Date: 2023-09-25 DOI: 10.1007/s00251-023-01320-w
K A Morrissey, M R Stammnitz, E Murchison, R D Miller
{"title":"Comparative genomics of the T cell receptor μ locus in marsupials and monotremes.","authors":"K A Morrissey, M R Stammnitz, E Murchison, R D Miller","doi":"10.1007/s00251-023-01320-w","DOIUrl":"10.1007/s00251-023-01320-w","url":null,"abstract":"<p><p>T cells are a primary component of the vertebrate adaptive immune system. There are three mammalian T cell lineages based on their T cell receptors (TCR). The αβ T cells and γδ T cells are ancient and found broadly in vertebrates. The more recently discovered γμ T cells are uniquely mammalian and only found in marsupials and monotremes. In this study, we compare the TCRμ locus (TRM) across the genomes of two marsupials, the gray short-tailed opossum and Tasmanian devil, and one monotreme, the platypus. These analyses revealed lineage-specific duplications, common to all non-eutherian mammals described. There is conserved synteny in the TRM loci of both marsupials but not in the monotreme. Our results are consistent with an ancestral cluster organization which was present in the last common mammalian ancestor which underwent lineage-specific duplications and divergence among the non-eutherian mammals.</p>","PeriodicalId":13446,"journal":{"name":"Immunogenetics","volume":" ","pages":"507-515"},"PeriodicalIF":2.9,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7615758/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41146868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Immunogenetics, sylvatic plague and its vectors: insights from the pathogen reservoir Mastomys natalensis in Tanzania. 免疫遗传学,森林瘟疫及其媒介:坦桑尼亚纳他氏Mastomys natalensis病原体库的见解。
IF 2.9 4区 医学
Immunogenetics Pub Date : 2023-12-01 Epub Date: 2023-10-19 DOI: 10.1007/s00251-023-01323-7
Lavinia Haikukutu, Japhet R Lyaku, Charles M Lyimo, Seth J Eiseb, Rhodes H Makundi, Ayodeji Olayemi, Kerstin Wilhelm, Nadine Müller-Klein, Dominik W Schmid, Ramona Fleischer, Simone Sommer
{"title":"Immunogenetics, sylvatic plague and its vectors: insights from the pathogen reservoir Mastomys natalensis in Tanzania.","authors":"Lavinia Haikukutu, Japhet R Lyaku, Charles M Lyimo, Seth J Eiseb, Rhodes H Makundi, Ayodeji Olayemi, Kerstin Wilhelm, Nadine Müller-Klein, Dominik W Schmid, Ramona Fleischer, Simone Sommer","doi":"10.1007/s00251-023-01323-7","DOIUrl":"10.1007/s00251-023-01323-7","url":null,"abstract":"<p><p>Yersinia pestis is a historically important vector-borne pathogen causing plague in humans and other mammals. Contemporary zoonotic infections with Y. pestis still occur in sub-Saharan Africa, including Tanzania and Madagascar, but receive relatively little attention. Thus, the role of wildlife reservoirs in maintaining sylvatic plague and spillover risks to humans is largely unknown. The multimammate rodent Mastomys natalensis is the most abundant and widespread rodent in peri-domestic areas in Tanzania, where it plays a major role as a Y. pestis reservoir in endemic foci. Yet, how M. natalensis' immunogenetics contributes to the maintenance of plague has not been investigated to date. Here, we surveyed wild M. natalensis for Y. pestis vectors, i.e., fleas, and tested for the presence of antibodies against Y. pestis using enzyme-linked immunosorbent assays (ELISA) in areas known to be endemic or without previous records of Y. pestis in Tanzania. We characterized the allelic and functional (i.e., supertype) diversity of the major histocompatibility complex (MHC class II) of M. natalensis and investigated links to Y. pestis vectors and infections. We detected antibodies against Y. pestis in rodents inhabiting both endemic areas and areas considered non-endemic. Of the 111 nucleotide MHC alleles, only DRB*016 was associated with an increased infestation with the flea Xenopsylla. Surprisingly, we found no link between MHC alleles or supertypes and antibodies of Y. pestis. Our findings hint, however, at local adaptations towards Y. pestis vectors, an observation that more exhaustive sampling could unwind in the future.</p>","PeriodicalId":13446,"journal":{"name":"Immunogenetics","volume":" ","pages":"517-530"},"PeriodicalIF":2.9,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10651713/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49677109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The KIR2DL1 intermediate upstream element participates in gene activation. KIR2DL1中间上游元件参与基因激活。
IF 2.9 4区 医学
Immunogenetics Pub Date : 2023-12-01 Epub Date: 2023-10-06 DOI: 10.1007/s00251-023-01321-9
Paul W Wright, Hongchuan Li, Md Ahasanur Rahman, Erik M Anderson, Megan Karwan, Jeffrey Carrell, Stephen K Anderson
{"title":"The KIR2DL1 intermediate upstream element participates in gene activation.","authors":"Paul W Wright, Hongchuan Li, Md Ahasanur Rahman, Erik M Anderson, Megan Karwan, Jeffrey Carrell, Stephen K Anderson","doi":"10.1007/s00251-023-01321-9","DOIUrl":"10.1007/s00251-023-01321-9","url":null,"abstract":"<p><p>The human KIR genes encode a family of class I MHC receptors that are expressed on subsets of NK cells. The expression of KIR proteins is controlled by a stochastic process, and competition between sense and antisense promoter elements has been suggested to program the variegated expression of these genes. Previous studies have demonstrated distinct roles of distal, intermediate, and proximal sense promoter/enhancer elements in gene activation and expression. Conversely, proximal and intronic antisense promoter transcripts have been associated with gene silencing at different stages of NK cell development. In the current study, we examine the effect of intermediate promoter deletion on KIR2DL1 expression in the YTS cell line. Homozygous deletion of the KIR2DL1 intermediate element did not affect proximal promoter activity but resulted in increased detection of upstream transcripts. No significant changes in alternative mRNA splicing or expression levels of KIR2DL1 protein were observed. However, intermediate element deletion was associated with a reduced frequency of gene activation by 5-azacytidine. Taken together, these results indicate that the intermediate element is not an enhancer required for KIR expression; however, it is required for the efficient activation of the gene.</p>","PeriodicalId":13446,"journal":{"name":"Immunogenetics","volume":" ","pages":"495-506"},"PeriodicalIF":2.9,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10651540/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41129347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Increased circulating Th17 cell populations in patients with pancreatic ductal adenocarcinoma. 胰腺导管腺癌患者循环Th17细胞群增加。
IF 3.2 4区 医学
Immunogenetics Pub Date : 2023-10-01 Epub Date: 2023-08-04 DOI: 10.1007/s00251-023-01318-4
Imteyaz Ahmad Khan, Nidhi Singh, Deepak Gunjan, Srikant Gopi, Nihar Ranjan Dash, Surabhi Gupta, Anoop Saraya
{"title":"Increased circulating Th17 cell populations in patients with pancreatic ductal adenocarcinoma.","authors":"Imteyaz Ahmad Khan, Nidhi Singh, Deepak Gunjan, Srikant Gopi, Nihar Ranjan Dash, Surabhi Gupta, Anoop Saraya","doi":"10.1007/s00251-023-01318-4","DOIUrl":"10.1007/s00251-023-01318-4","url":null,"abstract":"<p><p>T-helper 17 (Th17) cells are a subset of CD4<sup>+</sup> helper T cells that produce interleukin 17 (IL-17) and play a crucial role in the pathogenesis of inflammatory and autoimmune diseases. Few studies have been conducted to determine the role of Th17 cells in the tumorigenesis and development of pancreatic ductal adenocarcinoma (PDAC); however, its role is still unclear. In this study, the percentage of circulating Th17 cells and serum levels of IL-17A and IL-23 were analyzed using flow cytometry and ELISA, respectively, in 40 PDAC patients, 30 chronic pancreatitis (CP) patients and 30 healthy controls (HC). In addition, the mRNA expression levels of IL-17A, STAT3 and RORγt in tissue samples were quantified by qRT-PCR. The results showed that the percentage of circulating Th17 cells and the concentrations of serum IL-17A and IL-23 were significantly increased in PDAC patients as compared to CP and HC (P < 0.001). In addition, the higher level of IL-17A was significantly correlated with the poor overall survival of the PDAC patients. Furthermore, the frequencies of Th17 cells and IL-17A were significantly higher in stage III+IV PDAC patients versus stage I+II. A significant increase in IL-17A, STAT3 and RORγT mRNA was observed in patients with PDAC. Taken together, these findings suggest that the increased circulating Th17 cells and serum IL-17A may be involved in the development and metastasis of PDAC, and thus represent potential targets for the treatment of PDAC.</p>","PeriodicalId":13446,"journal":{"name":"Immunogenetics","volume":" ","pages":"433-443"},"PeriodicalIF":3.2,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9935394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Correlation between human leukocyte antigen ligands and killer cell immunoglobulin-like receptors in aplastic anemia patients from Shaanxi Han. 陕西汉族再生障碍性贫血患者白细胞抗原配体与杀伤细胞免疫球蛋白样受体的相关性研究。
IF 3.2 4区 医学
Immunogenetics Pub Date : 2023-10-01 Epub Date: 2023-08-17 DOI: 10.1007/s00251-023-01316-6
Tianju Wang, Jun Qi, Manni Wang, Hua Xu, Junhua Wu, Lixia Shang, Le Chen, Yuhui Li
{"title":"Correlation between human leukocyte antigen ligands and killer cell immunoglobulin-like receptors in aplastic anemia patients from Shaanxi Han.","authors":"Tianju Wang,&nbsp;Jun Qi,&nbsp;Manni Wang,&nbsp;Hua Xu,&nbsp;Junhua Wu,&nbsp;Lixia Shang,&nbsp;Le Chen,&nbsp;Yuhui Li","doi":"10.1007/s00251-023-01316-6","DOIUrl":"10.1007/s00251-023-01316-6","url":null,"abstract":"<p><p>Regulating natural killer (NK) cell responses in hematological malignancies largely depend on molecular interactions between killer cell immunoglobulin-like receptors (KIR) and human leukocyte antigen (HLA) class I ligands. The goal of the current study was to examine the key functions of KIR genes, gene combinations of KIR-HLA, and KIR genotypes in genetic predisposition to aplastic anemia (AA). Herein, the genotyping of 16 KIR genes and HLA-A, -B, and -C ligands were performed in 72 AA patients and 150 healthy controls using PCR evaluations with sequence-specific primers using standard assays. According to the obtained results, AA patients had an increased incidence of activating KIR and KIR2DS4 (P = 0.465 × 10<sup>-4</sup>, Pc = 0.837 × 10<sup>-3</sup>, OR = 20.81, 95% CI = 2.786-155.5) compared to controls. KIR/HLA class I ligand profile KIR2DS4/C1 (P = 0.350 × 10<sup>-4</sup>, Pc = 0.630 × 10<sup>-3</sup>, OR = 8.944, 95% CI = 2.667-29.993) was significantly elevated in AA patients compared to healthy controls. Genotype AA1 (P = 0.003, OR = 2.351, 95% CI = 1.325-4.172) were increased, and AA195 (P = 0.006, OR = 0.060, 95% CI = 0.004-1.023) was decreased among AA cases compared to controls. Our findings indicated that KIR2DS4 may play a role in the pathogenesis of AA. This study revealed the contribution of KIR genes in the etiology of AA cases.</p>","PeriodicalId":13446,"journal":{"name":"Immunogenetics","volume":" ","pages":"445-454"},"PeriodicalIF":3.2,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10020785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Factors regulating the differences in frequency of infiltration of Th17 and Treg of the blood-brain barrier. 调节血脑屏障Th17和Treg浸润频率差异的因素。
IF 3.2 4区 医学
Immunogenetics Pub Date : 2023-10-01 Epub Date: 2023-07-11 DOI: 10.1007/s00251-023-01310-y
Norwin Kubick, Marzena Lazarczyk, Nina Strzałkowska, Anna Charuta, Jarosław Olav Horbańczuk, Mariusz Sacharczuk, Michel Edwar Mickael
{"title":"Factors regulating the differences in frequency of infiltration of Th17 and Treg of the blood-brain barrier.","authors":"Norwin Kubick,&nbsp;Marzena Lazarczyk,&nbsp;Nina Strzałkowska,&nbsp;Anna Charuta,&nbsp;Jarosław Olav Horbańczuk,&nbsp;Mariusz Sacharczuk,&nbsp;Michel Edwar Mickael","doi":"10.1007/s00251-023-01310-y","DOIUrl":"10.1007/s00251-023-01310-y","url":null,"abstract":"<p><p>Controlling CD4<sup>+</sup> immune cell infiltration of the brain is a leading aim in designing therapeutic strategies for a range of neuropathological disorders such as multiple sclerosis, Alzheimer's disease, and depression. CD4<sup>+</sup> T cells are a highly heterogeneous and reprogrammable family, which includes various distinctive cell types such as Th17, Th1, and Treg cells. Interestingly Th17 and Treg cells share a related transcriptomic profile, where the TGFβ-SMADS pathway plays a fundamental role in regulating the differentiation of both of these cell types. However, Th17 could be highly pathogenic and was shown to promote inflammation in various neuropathological disorders. Conversely, Treg is anti-inflammatory and is known to inhibit Th17. It could be noticed that Th17 frequencies of infiltration of the blood-brain barrier in various neurological disorders are significantly upregulated. However, Treg infiltration numbers are significantly low. The reasons behind these contradicting observations are still unknown. In this perspective, we propose that the difference in the T-cell receptor repertoire diversity, diapedesis pathways, chemokine expression, and mechanical properties of these two cell types could be contributing to answering this intriguing question.</p>","PeriodicalId":13446,"journal":{"name":"Immunogenetics","volume":" ","pages":"417-423"},"PeriodicalIF":3.2,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10143797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信