{"title":"The Freshness Game: Timely Communications in the Presence of an Adversary","authors":"Subhankar Banerjee;Sennur Ulukus","doi":"10.1109/TNET.2024.3410228","DOIUrl":"10.1109/TNET.2024.3410228","url":null,"abstract":"We consider a communication system where a base station (BS) transmits update packets to N users, one user at a time, over a wireless channel. We investigate the age of this status updating system with an adversary that jams the update packets in the downlink. We consider two system models: with diversity and without diversity. In the model without diversity, in each time slot, the BS schedules a user from N users according to a user scheduling algorithm. The constrained adversary blocks at most a given fraction, \u0000<inline-formula> <tex-math>$alpha $ </tex-math></inline-formula>\u0000, of the time slots over a horizon of T slots, i.e., it can block at most \u0000<inline-formula> <tex-math>$alpha T$ </tex-math></inline-formula>\u0000 slots of its choosing out of the total T time slots. We show that if the BS schedules the users with a stationary randomized policy, then the optimal choice for the adversary is to block the user which has the lowest probability of getting scheduled by the BS, at the middle of the time horizon, consecutively for \u0000<inline-formula> <tex-math>$alpha T$ </tex-math></inline-formula>\u0000 time slots. The interesting consecutive property of the blocked time slots is due to the cumulative nature of the age metric. In the model with diversity, in each time slot, the BS schedules a user from N users and chooses a sub-carrier from \u0000<inline-formula> <tex-math>$N_{sub}$ </tex-math></inline-formula>\u0000 sub-carriers to transmit update packets to the scheduled user according to a user scheduling algorithm and a sub-carrier choosing algorithm, respectively. The adversary blocks \u0000<inline-formula> <tex-math>$alpha T$ </tex-math></inline-formula>\u0000 time slots of its choosing out of T time slots at the sub-carriers of its choosing. We show that for large T, the uniform user scheduling algorithm together with the uniform sub-carrier choosing algorithm is \u0000<inline-formula> <tex-math>$frac {2 N_{sub}}{N_{sub}-1}$ </tex-math></inline-formula>\u0000 optimal. Next, we investigate the game theoretic equilibrium points of this status updating system. For the model without diversity, we show that a Nash equilibrium does not exist, however, a Stackelberg equilibrium exists when the scheduling algorithm of the BS acts as the leader and the adversary acts as the follower. For the model with diversity, we show that a Nash equilibrium exists and identify the Nash equilibrium. Finally, we extend the model without diversity to the case where the BS can serve multiple users and the adversary can jam multiple users, at a time.","PeriodicalId":13443,"journal":{"name":"IEEE/ACM Transactions on Networking","volume":"32 5","pages":"4067-4084"},"PeriodicalIF":3.0,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142223317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Riheng Jia;Qiyong Fu;Zhonglong Zheng;Guanglin Zhang;Minglu Li
{"title":"Energy and Time Trade-Off Optimization for Multi-UAV Enabled Data Collection of IoT Devices","authors":"Riheng Jia;Qiyong Fu;Zhonglong Zheng;Guanglin Zhang;Minglu Li","doi":"10.1109/TNET.2024.3450489","DOIUrl":"10.1109/TNET.2024.3450489","url":null,"abstract":"In this work, we study the problem of dispatching multiple unmanned aerial vehicles (UAVs) for data collection in internet of things (IoT), where each UAV departs from its start point, visits some IoT devices for data collection and returns to its destination point. Considering the UAV’s limited onboard energy and the time required to collect data from all IoT devices, it is essential to appropriately assign the data collection task for each UAV, such that none of the dispatched UAVs consumes excessive energy and the maximum task completion time among all UAVs is minimized. To optimize those two conflicting objectives, we focus on minimizing the maximum task completion time and the maximum energy consumption among all UAVs, by jointly designing the flight trajectory, hovering positions for data collection and flight speed of each UAV. We formulate this problem as a multi-objective optimization problem with the aim of obtaining a set of Pareto-optimal solutions in terms of time or energy dominance. Due to the NP-hardness and complexity of the formulated problem, we propose a multi-strategy multi-objective ant colony optimization algorithm (MSMOACO), which is developed based on a constrained ant colony optimization algorithm with a fitnessguided mutation strategy and an adaptive hovering strategy being delicately incorporated, to solve the problem. To accommodate the practical scenario, we also design a novel geometry-based collision avoidance strategy to reduce the possibility of collisions among UAVs. Extensive evaluations validate the effectiveness and superiority of the proposed MSMOACO, compared with previous approaches.","PeriodicalId":13443,"journal":{"name":"IEEE/ACM Transactions on Networking","volume":"32 6","pages":"5172-5187"},"PeriodicalIF":3.0,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142223320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Robust App Fingerprinting Over the Air","authors":"Jianfeng Li;Zheng Lin;Jian Qu;Shuohan Wu;Hao Zhou;Yangyang Liu;Xiaobo Ma;Ting Wang;Xiapu Luo;Xiaohong Guan","doi":"10.1109/TNET.2024.3448621","DOIUrl":"10.1109/TNET.2024.3448621","url":null,"abstract":"Mobile apps have significantly transformed various aspects of modern life, leading to growing concerns about privacy risks. Despite widespread encrypted communication, app fingerprinting (AF) attacks threaten user privacy substantially. However, existing AF attacks, when targeted at wireless traffic, face four fundamental challenges, namely 1) sample inseparability; 2) app multiplexing; 3) signal attenuation; and 4) open-world recognition. In this paper, we advance a novel AF attack, dubbed PacketPrint, to recognize app user activities over the air in an open-world setting. We introduce two novel models, i.e., sequential XGBoost and hierarchical bag-of-words model, to tackle sample inseparability and enhance robustness against noise packets arising from app multiplexing. We also propose the environment-aware model enhancement to bolster PacketPrint’s robustness in handling packet loss at the sniffer caused by signal attenuation. We conduct extensive experiments to evaluate the proposed attack in a series of challenging scenarios, including 1) open-world setting; 2) simultaneous use of different apps; 3) severe packet loss at the sniffer; and 4) cross-dataset recognition. The experimental results show that PacketPrint can accurately recognize app user activities. It achieves the average F1-score 0.947 for open-world app recognition and the average F1-score 0.959 for in-app user action recognition.","PeriodicalId":13443,"journal":{"name":"IEEE/ACM Transactions on Networking","volume":"32 6","pages":"5065-5080"},"PeriodicalIF":3.0,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142223319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Power Is Knowledge: Distributed and Throughput Optimal Power Control in Wireless Networks","authors":"Ilai Bistritz;Nicholas Bambos","doi":"10.1109/TNET.2024.3444602","DOIUrl":"10.1109/TNET.2024.3444602","url":null,"abstract":"Consider N devices that transmit packets for T time slots, where device n uses transmission power \u0000<inline-formula> <tex-math>$P_{n}left ({{t}}right)$ </tex-math></inline-formula>\u0000 at time slot t. Independently at each time slot, a packet arrives at device n with probability \u0000<inline-formula> <tex-math>$lambda _{n}$ </tex-math></inline-formula>\u0000. The probability of successfully transmitting a packet \u0000<inline-formula> <tex-math>$mu _{n}left ({{boldsymbol {P}}}right)$ </tex-math></inline-formula>\u0000 is a function of the transmission powers of all devices \u0000<inline-formula> <tex-math>$boldsymbol {P}$ </tex-math></inline-formula>\u0000 and the channel gains \u0000<inline-formula> <tex-math>$left {{{ g_{m,n}}}right } $ </tex-math></inline-formula>\u0000 between them. This function is unknown to the devices that only observe binary reward \u0000<inline-formula> <tex-math>$r_{n}left ({{boldsymbol {P}}}right)$ </tex-math></inline-formula>\u0000 of whether the transmission was successful (ACK/NACK). All packets of device n that were not successfully transmitted yet at time slot t wait in a queue \u0000<inline-formula> <tex-math>$Q_{n}left ({{t}}right)$ </tex-math></inline-formula>\u0000. The centralized max-weight scheduling (MWS) can stabilize the queues for any feasible \u0000<inline-formula> <tex-math>$boldsymbol {lambda }$ </tex-math></inline-formula>\u0000 (i.e., throughput optimality). However, MWS for power control is intractable even as a centralized algorithm, let alone in a distributed network. We design a distributed yet asymptotically throughput optimal power control for the wireless interference channel, which has long been recognized as a major challenge. Our main observation is that the interference \u0000<inline-formula> <tex-math>$I_{n}left ({{t}}right)=sum g_{m,n}^{2}P_{m}left ({{t}}right)$ </tex-math></inline-formula>\u0000 can be leveraged to evaluate the weighted throughput if we add a short pilot signal with power \u0000<inline-formula> <tex-math>$P_{m}propto Q_{m}left ({{t}}right)r_{m}left ({{boldsymbol {P}}}right)$ </tex-math></inline-formula>\u0000 after transmitting the data. Our algorithm requires no explicit communication between the devices and learns to approximate MWS, overcoming its intractable optimization and the unknown throughput functions. We prove that, for large T, our algorithm can achieve any feasible \u0000<inline-formula> <tex-math>$boldsymbol {lambda }$ </tex-math></inline-formula>\u0000. Numerical experiments show that our algorithm outperforms the state-of-the-art distributed power control, exhibiting better performance than our theoretical bounds.","PeriodicalId":13443,"journal":{"name":"IEEE/ACM Transactions on Networking","volume":"32 6","pages":"4722-4734"},"PeriodicalIF":3.0,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142223321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Information-Sensitive In-Band Network Telemetry in P4-Based Programmable Data Plane","authors":"Zichen Xu;Ziye Lu;Zuqing Zhu","doi":"10.1109/TNET.2024.3448244","DOIUrl":"10.1109/TNET.2024.3448244","url":null,"abstract":"With the development of programmable data plane (PDP), in-band network telemetry (INT) has become a promising network monitoring technique to visualize network operations in a fine-grained and real-time way. In this work, to better balance the tradeoff between INT overheads and monitoring accuracy, we design and optimize an information-sensitive INT system (namely, P4InfoSen-INT), which makes each PDP switch decide locally whether and what type(s) of telemetry data should be inserted in a packet based on the “information content” of the data, and implement it in P4-based PDP switches. We first realize the basic principle of P4InfoSen-INT with P4 programs. Then, we propose algorithms to estimate the information content of telemetry data accurately in a dynamic network and optimize the tradeoff between INT overheads and monitoring accuracy. Finally, we further optimize the implementation of P4InfoSen-INT by proposing table merging to reduce stage occupation in each switch. Experimental results verify that our proposed P4InfoSen-INT can balance the tradeoff between INT overheads and monitoring accuracy better than existing benchmarks.","PeriodicalId":13443,"journal":{"name":"IEEE/ACM Transactions on Networking","volume":"32 6","pages":"5081-5096"},"PeriodicalIF":3.0,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142223322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiayu Yang;Yuxin Chen;Kaiping Xue;Jiangping Han;Jian Li;Ruidong Li;Qibin Sun;Jun Lu
{"title":"Adaptive Multi-Source Multi-Path Congestion Control for Named Data Networking","authors":"Jiayu Yang;Yuxin Chen;Kaiping Xue;Jiangping Han;Jian Li;Ruidong Li;Qibin Sun;Jun Lu","doi":"10.1109/TNET.2024.3447467","DOIUrl":"10.1109/TNET.2024.3447467","url":null,"abstract":"Named Data Networking (NDN), with a receiver-driven connectionless communication paradigm, naturally supports content delivery from multiple sources via multiple paths. In a dynamic environment, sources and paths may change unexpectedly and are uncontrollable for consumer, which requires flexible rate control and real-time multi-path management, still lacking investigations. To address this issue, we propose an Adaptive Multi-source Multi-path Congestion Control (AMM-CC) scheme based on online learning. AMM-CC explores source/path distribution with continuous micro-experiments and abstracts the empirically experienced performance by meticulously designed two-level utility functions. Specifically, AMM-CC enables each consumer to optimize a local transmission-level utility function that fuses multi-source characteristics, including congestion level and source weights. Then, a sub-gradient descent method is designed to adjust transmission rate adaptively and achieve fine-grained control. Moreover, AMM-CC coordinates consumer with the forwarding module to ensure efficient and on-time multi-path management. It enables consumer to determine congestion gap among multiple paths by a path-level utility that sensitively captures changes and congestion on each path. Then, consumer further notifies the forwarding module in achieving precise traffic transferring. We conducted comprehensive evaluations in dynamic scenario with various content distribution using the NDN simulator, ndnSIM. The evaluation results demonstrate that AMM-CC can adapt to flexible content acquisition from multi-sources and significantly improve bandwidth utilization of multi-path compared with state-of-the-art schemes.","PeriodicalId":13443,"journal":{"name":"IEEE/ACM Transactions on Networking","volume":"32 6","pages":"5049-5064"},"PeriodicalIF":3.0,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142223323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Game-Theoretic Bandits for Network Optimization With High-Probability Swap-Regret Upper Bounds","authors":"Zhiming Huang;Jianping Pan","doi":"10.1109/TNET.2024.3444593","DOIUrl":"10.1109/TNET.2024.3444593","url":null,"abstract":"In this paper, we study a multi-agent bandit problem in an unknown general-sum game repeated for a number of rounds (i.e., learning in a black-box game with bandit feedback), where a set of agents have no information about the underlying game structure and cannot observe each other’s actions and rewards. In each round, each agent needs to play an arm (i.e., action) from a (possibly different) arm set (i.e., action set), and \u0000<italic>only</i>\u0000 receives the reward of the \u0000<italic>played</i>\u0000 arm that is affected by other agents’ actions. The objective of each agent is to minimize her own cumulative swap regret, where the swap regret is a generic performance measure for online learning algorithms. Many network optimization problems can be cast with the framework of this multi-agent bandit problem, such as wireless medium access control and end-to-end congestion control. We propose an online-mirror-descent-based algorithm and provide near-optimal high-probability swap-regret upper bounds based on refined martingale analyses, which can further bound the expected swap regret instead of the pseudo-regret studied in the literature. Moreover, the high-probability bounds guarantee that correlated equilibria can be achieved in a polynomial number of rounds if the algorithms are played by all agents. To assess the performance of the studied algorithm, we conducted numerical experiments in the context of wireless medium access control, and we performed emulation experiments by implementing the studied algorithms through the Linux Kernel for the end-to-end congestion control.","PeriodicalId":13443,"journal":{"name":"IEEE/ACM Transactions on Networking","volume":"32 6","pages":"4855-4870"},"PeriodicalIF":3.0,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142223324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Minimizing Buffer Utilization for Lossless Inter-DC Links","authors":"Chengyuan Huang;Feiyang Xue;Peiwen Yu;Xiaoliang Wang;Yanqing Chen;Tao Wu;Lei Han;Zifa Han;Bingquan Wang;Xiangyu Gong;Chen Tian;Wanchun Dou;Guihai Chen;Hao Yin","doi":"10.1109/TNET.2024.3443600","DOIUrl":"10.1109/TNET.2024.3443600","url":null,"abstract":"RDMA over Converged Ethernet (RoCEv2) has been widely deployed to data centers (DCs) for its better compatibility with Ethernet/IP than Infiniband (IB). As cross-DC applications emerge, they also demand high throughput, low latency, and lossless network for cross-DC data transmission. However, RoCEv2’s underlying lossless mechanism Priority-based Flow Control (PFC) cannot fit into the long-haul transmission scenario and degrades the performance of RoCEv2. PFC is myopic and only considers queue length to pause upstream senders, which leads to large queueing delay. This paper proposes Bifrost, a downstream-driven lossless flow control that supports long distance cross-DC data transmission. Bifrost uses virtual incoming packets, which indicates the upper bound of in-flight packets, together with buffered packets to control the flow rate. It minimizes the buffer space requirement to one-hop bandwidth delay product (BDP) and achieves low one-way latency. Moreover, we extend Bifrost and propose BifrostX, to accommodate the multi-priority queue of the current switch implementation. BifrostX enables flow control for each queue separately while maintaining low buffer reservation, no throughput loss, and no packet loss. Real-world experiments are conducted with prototype switches and 80 kilometers cables. Evaluations demonstrate that compared to PFC, Bifrost reduces average/tail flow completion time (FCT) of inter-DC flows by up to 22.5%/42.0%, respectively. Bifrost is compatible with existing infrastructure and can support distance of thousands of kilometers.","PeriodicalId":13443,"journal":{"name":"IEEE/ACM Transactions on Networking","volume":"32 6","pages":"4960-4975"},"PeriodicalIF":3.0,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142223328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"SteadySketch: A High-Performance Algorithm for Finding Steady Flows in Data Streams","authors":"Zhuochen Fan;Xiangyuan Wang;Xiaodong Li;Jiarui Guo;Wenrui Liu;Haoyu Li;Sheng Long;Zheng Zhong;Tong Yang;Xuebin Chen;Bin Cui","doi":"10.1109/TNET.2024.3444488","DOIUrl":"10.1109/TNET.2024.3444488","url":null,"abstract":"In this paper, we study steady flows in data streams, which refers to the flows whose arrival rate is always non-zero and around a fixed value for several consecutive time windows. To find steady flows in real time, we propose a novel sketch-based algorithm, SteadySketch, aiming to accurately report steady flows with limited memory. To the best of our knowledge, this is the first work to define and find steady flows in data streams. The key novelty of SteadySketch is our proposed reborn technique, which reduces the memory requirement by 75%. Our theoretical proofs show that the negative impact of the reborn technique is small. Experimental results show that, compared with the two comparison schemes, SteadySketch improves the Precision Rate (PR) by around 79.5% and 82.8%, and reduces the Average Relative Error (ARE) by around \u0000<inline-formula> <tex-math>$905.9times $ </tex-math></inline-formula>\u0000 and \u0000<inline-formula> <tex-math>$657.9times $ </tex-math></inline-formula>\u0000, respectively. Finally, we provide three concrete cases: cache prefetch, Redis and P4 implementation. As we will demonstrate, SteadySketch can effectively improve the cache hit ratio while achieving satisfying performance on both Redis and Tofino switches. All related codes of SteadySketch are available at GitHub.","PeriodicalId":13443,"journal":{"name":"IEEE/ACM Transactions on Networking","volume":"32 6","pages":"5004-5019"},"PeriodicalIF":3.0,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142223325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"IEEE/ACM Transactions on Networking Information for Authors","authors":"","doi":"10.1109/TNET.2024.3429993","DOIUrl":"https://doi.org/10.1109/TNET.2024.3429993","url":null,"abstract":"","PeriodicalId":13443,"journal":{"name":"IEEE/ACM Transactions on Networking","volume":"32 4","pages":"3651-3651"},"PeriodicalIF":3.0,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10640178","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142013252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}