{"title":"协作式边缘计算中 DNN 推理网络效用的在线优化","authors":"Rui Li;Tao Ouyang;Liekang Zeng;Guocheng Liao;Zhi Zhou;Xu Chen","doi":"10.1109/TNET.2024.3421356","DOIUrl":null,"url":null,"abstract":"Collaborative Edge Computing (CEC) is an emerging paradigm that collaborates heterogeneous edge devices as a resource pool to compute DNN inference tasks in proximity such as edge video analytics. Nevertheless, as the key knob to improve network utility in CEC, existing works mainly focus on the workload routing strategies among edge devices with the aim of minimizing the routing cost, remaining an open question for joint workload allocation and routing optimization problem from a system perspective. To this end, this paper presents a holistic, learned optimization for CEC towards maximizing the total network utility in an online manner, even though the utility functions of task input rates are unknown a priori. In particular, we characterize the CEC system in a flow model and formulate an online learning problem in a form of cross-layer optimization. We propose a nested-loop algorithm to solve workload allocation and distributed routing iteratively, using the tools of gradient sampling and online mirror descent. To improve the convergence rate over the nested-loop version, we further devise a single-loop algorithm. Rigorous analysis is provided to show its inherent convexity, efficient convergence, as well as algorithmic optimality. Finally, extensive numerical simulations demonstrate the superior performance of our solutions.","PeriodicalId":13443,"journal":{"name":"IEEE/ACM Transactions on Networking","volume":"32 5","pages":"4414-4426"},"PeriodicalIF":3.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Online Optimization of DNN Inference Network Utility in Collaborative Edge Computing\",\"authors\":\"Rui Li;Tao Ouyang;Liekang Zeng;Guocheng Liao;Zhi Zhou;Xu Chen\",\"doi\":\"10.1109/TNET.2024.3421356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Collaborative Edge Computing (CEC) is an emerging paradigm that collaborates heterogeneous edge devices as a resource pool to compute DNN inference tasks in proximity such as edge video analytics. Nevertheless, as the key knob to improve network utility in CEC, existing works mainly focus on the workload routing strategies among edge devices with the aim of minimizing the routing cost, remaining an open question for joint workload allocation and routing optimization problem from a system perspective. To this end, this paper presents a holistic, learned optimization for CEC towards maximizing the total network utility in an online manner, even though the utility functions of task input rates are unknown a priori. In particular, we characterize the CEC system in a flow model and formulate an online learning problem in a form of cross-layer optimization. We propose a nested-loop algorithm to solve workload allocation and distributed routing iteratively, using the tools of gradient sampling and online mirror descent. To improve the convergence rate over the nested-loop version, we further devise a single-loop algorithm. Rigorous analysis is provided to show its inherent convexity, efficient convergence, as well as algorithmic optimality. Finally, extensive numerical simulations demonstrate the superior performance of our solutions.\",\"PeriodicalId\":13443,\"journal\":{\"name\":\"IEEE/ACM Transactions on Networking\",\"volume\":\"32 5\",\"pages\":\"4414-4426\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE/ACM Transactions on Networking\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10600156/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10600156/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Online Optimization of DNN Inference Network Utility in Collaborative Edge Computing
Collaborative Edge Computing (CEC) is an emerging paradigm that collaborates heterogeneous edge devices as a resource pool to compute DNN inference tasks in proximity such as edge video analytics. Nevertheless, as the key knob to improve network utility in CEC, existing works mainly focus on the workload routing strategies among edge devices with the aim of minimizing the routing cost, remaining an open question for joint workload allocation and routing optimization problem from a system perspective. To this end, this paper presents a holistic, learned optimization for CEC towards maximizing the total network utility in an online manner, even though the utility functions of task input rates are unknown a priori. In particular, we characterize the CEC system in a flow model and formulate an online learning problem in a form of cross-layer optimization. We propose a nested-loop algorithm to solve workload allocation and distributed routing iteratively, using the tools of gradient sampling and online mirror descent. To improve the convergence rate over the nested-loop version, we further devise a single-loop algorithm. Rigorous analysis is provided to show its inherent convexity, efficient convergence, as well as algorithmic optimality. Finally, extensive numerical simulations demonstrate the superior performance of our solutions.
期刊介绍:
The IEEE/ACM Transactions on Networking’s high-level objective is to publish high-quality, original research results derived from theoretical or experimental exploration of the area of communication/computer networking, covering all sorts of information transport networks over all sorts of physical layer technologies, both wireline (all kinds of guided media: e.g., copper, optical) and wireless (e.g., radio-frequency, acoustic (e.g., underwater), infra-red), or hybrids of these. The journal welcomes applied contributions reporting on novel experiences and experiments with actual systems.