用于物联网异常检测的格拉斯曼漫域上的联合 PCA

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Tung-Anh Nguyen;Long Tan Le;Tuan Dung Nguyen;Wei Bao;Suranga Seneviratne;Choong Seon Hong;Nguyen H. Tran
{"title":"用于物联网异常检测的格拉斯曼漫域上的联合 PCA","authors":"Tung-Anh Nguyen;Long Tan Le;Tuan Dung Nguyen;Wei Bao;Suranga Seneviratne;Choong Seon Hong;Nguyen H. Tran","doi":"10.1109/TNET.2024.3423780","DOIUrl":null,"url":null,"abstract":"With the proliferation of the Internet of Things (IoT) and the rising interconnectedness of devices, network security faces significant challenges, especially from anomalous activities. While traditional machine learning-based intrusion detection systems (ML-IDS) effectively employ supervised learning methods, they possess limitations such as the requirement for labeled data and challenges with high dimensionality. Recent unsupervised ML-IDS approaches such as AutoEncoders and Generative Adversarial Networks (GAN) offer alternative solutions but pose challenges in deployment onto resource-constrained IoT devices and in interpretability. To address these concerns, this paper proposes a novel federated unsupervised anomaly detection framework – FedPCA – that leverages Principal Component Analysis (PCA) and the Alternating Directions Method Multipliers (ADMM) to learn common representations of distributed non-i.i.d. datasets. Building on the FedPCA framework, we propose two algorithms, FedPE in Euclidean space and FedPG on Grassmann manifolds. Our approach enables real-time threat detection and mitigation at the device level, enhancing network resilience while ensuring privacy. Moreover, the proposed algorithms are accompanied by theoretical convergence rates even under a sub-sampling scheme, a novel result. Experimental results on the UNSW-NB15 and TON-IoT datasets show that our proposed methods offer performance in anomaly detection comparable to non-linear baselines, while providing significant improvements in communication and memory efficiency, underscoring their potential for securing IoT networks.","PeriodicalId":13443,"journal":{"name":"IEEE/ACM Transactions on Networking","volume":"32 5","pages":"4456-4471"},"PeriodicalIF":3.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Federated PCA on Grassmann Manifold for IoT Anomaly Detection\",\"authors\":\"Tung-Anh Nguyen;Long Tan Le;Tuan Dung Nguyen;Wei Bao;Suranga Seneviratne;Choong Seon Hong;Nguyen H. Tran\",\"doi\":\"10.1109/TNET.2024.3423780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the proliferation of the Internet of Things (IoT) and the rising interconnectedness of devices, network security faces significant challenges, especially from anomalous activities. While traditional machine learning-based intrusion detection systems (ML-IDS) effectively employ supervised learning methods, they possess limitations such as the requirement for labeled data and challenges with high dimensionality. Recent unsupervised ML-IDS approaches such as AutoEncoders and Generative Adversarial Networks (GAN) offer alternative solutions but pose challenges in deployment onto resource-constrained IoT devices and in interpretability. To address these concerns, this paper proposes a novel federated unsupervised anomaly detection framework – FedPCA – that leverages Principal Component Analysis (PCA) and the Alternating Directions Method Multipliers (ADMM) to learn common representations of distributed non-i.i.d. datasets. Building on the FedPCA framework, we propose two algorithms, FedPE in Euclidean space and FedPG on Grassmann manifolds. Our approach enables real-time threat detection and mitigation at the device level, enhancing network resilience while ensuring privacy. Moreover, the proposed algorithms are accompanied by theoretical convergence rates even under a sub-sampling scheme, a novel result. Experimental results on the UNSW-NB15 and TON-IoT datasets show that our proposed methods offer performance in anomaly detection comparable to non-linear baselines, while providing significant improvements in communication and memory efficiency, underscoring their potential for securing IoT networks.\",\"PeriodicalId\":13443,\"journal\":{\"name\":\"IEEE/ACM Transactions on Networking\",\"volume\":\"32 5\",\"pages\":\"4456-4471\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE/ACM Transactions on Networking\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10593810/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10593810/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

随着物联网(IoT)的普及和设备互联程度的不断提高,网络安全面临着巨大的挑战,尤其是来自异常活动的挑战。虽然传统的基于机器学习的入侵检测系统(ML-IDS)有效地采用了监督学习方法,但它们也存在一些局限性,例如对标记数据的要求和高维度的挑战。自动编码器和生成对抗网络(GAN)等最新的无监督 ML-IDS 方法提供了替代解决方案,但在部署到资源受限的物联网设备和可解释性方面存在挑战。为了解决这些问题,本文提出了一种新颖的联合无监督异常检测框架--FedPCA,它利用主成分分析(PCA)和交替方向法乘法器(ADMM)来学习分布式非 i.i.d. 数据集的通用表示。在 FedPCA 框架的基础上,我们提出了两种算法:欧几里得空间中的 FedPE 和格拉斯曼流形上的 FedPG。我们的方法可在设备层面实现实时威胁检测和缓解,在确保隐私的同时增强网络弹性。此外,即使在子采样方案下,所提出的算法也具有理论收敛率,这是一项新成果。在 UNSW-NB15 和 TON-IoT 数据集上的实验结果表明,我们提出的方法在异常检测方面的性能可与非线性基线相媲美,同时在通信和内存效率方面也有显著提高,这凸显了它们在确保物联网网络安全方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Federated PCA on Grassmann Manifold for IoT Anomaly Detection
With the proliferation of the Internet of Things (IoT) and the rising interconnectedness of devices, network security faces significant challenges, especially from anomalous activities. While traditional machine learning-based intrusion detection systems (ML-IDS) effectively employ supervised learning methods, they possess limitations such as the requirement for labeled data and challenges with high dimensionality. Recent unsupervised ML-IDS approaches such as AutoEncoders and Generative Adversarial Networks (GAN) offer alternative solutions but pose challenges in deployment onto resource-constrained IoT devices and in interpretability. To address these concerns, this paper proposes a novel federated unsupervised anomaly detection framework – FedPCA – that leverages Principal Component Analysis (PCA) and the Alternating Directions Method Multipliers (ADMM) to learn common representations of distributed non-i.i.d. datasets. Building on the FedPCA framework, we propose two algorithms, FedPE in Euclidean space and FedPG on Grassmann manifolds. Our approach enables real-time threat detection and mitigation at the device level, enhancing network resilience while ensuring privacy. Moreover, the proposed algorithms are accompanied by theoretical convergence rates even under a sub-sampling scheme, a novel result. Experimental results on the UNSW-NB15 and TON-IoT datasets show that our proposed methods offer performance in anomaly detection comparable to non-linear baselines, while providing significant improvements in communication and memory efficiency, underscoring their potential for securing IoT networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE/ACM Transactions on Networking
IEEE/ACM Transactions on Networking 工程技术-电信学
CiteScore
8.20
自引率
5.40%
发文量
246
审稿时长
4-8 weeks
期刊介绍: The IEEE/ACM Transactions on Networking’s high-level objective is to publish high-quality, original research results derived from theoretical or experimental exploration of the area of communication/computer networking, covering all sorts of information transport networks over all sorts of physical layer technologies, both wireline (all kinds of guided media: e.g., copper, optical) and wireless (e.g., radio-frequency, acoustic (e.g., underwater), infra-red), or hybrids of these. The journal welcomes applied contributions reporting on novel experiences and experiments with actual systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信