Hanlin Huang;Xinle Du;Tong Li;Haiyang Wang;Ke Xu;Mowei Wang;Huichen Dai
{"title":"重新架构无损以太网中的缓冲区管理","authors":"Hanlin Huang;Xinle Du;Tong Li;Haiyang Wang;Ke Xu;Mowei Wang;Huichen Dai","doi":"10.1109/TNET.2024.3430989","DOIUrl":null,"url":null,"abstract":"Converged Ethernet employs Priority-based Flow Control (PFC) to provide a lossless network. However, issues caused by PFC, including victim flow, congestion spreading, and deadlock, impede its large-scale deployment in production systems. The fine-grained experimental observations on switch buffer occupancy find that the root cause of these performance problems is a mismatch of sending rates between end-to-end congestion control and hop-by-hop flow control. Resolving this mismatch requires the switch to provide an additional buffer, which is not supported by the classic dynamic threshold (DT) policy in current shared-buffer commercial switches. In this paper, we propose Selective-PFC (SPFC), a practical buffer management scheme that handles such mismatch. Specifically, SPFC incrementally modifies DT by proactively detecting port traffic and adjusting buffer allocation accordingly to trigger PFC PAUSE frames selectively. Extensive case studies demonstrate that SPFC can reduce the number of PFC PAUSEs on non-bursty ports by up to 69.0%, and reduce the average flow completion time by up to 83.5% for large victim flows.","PeriodicalId":13443,"journal":{"name":"IEEE/ACM Transactions on Networking","volume":"32 6","pages":"4749-4764"},"PeriodicalIF":3.0000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Re-Architecting Buffer Management in Lossless Ethernet\",\"authors\":\"Hanlin Huang;Xinle Du;Tong Li;Haiyang Wang;Ke Xu;Mowei Wang;Huichen Dai\",\"doi\":\"10.1109/TNET.2024.3430989\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Converged Ethernet employs Priority-based Flow Control (PFC) to provide a lossless network. However, issues caused by PFC, including victim flow, congestion spreading, and deadlock, impede its large-scale deployment in production systems. The fine-grained experimental observations on switch buffer occupancy find that the root cause of these performance problems is a mismatch of sending rates between end-to-end congestion control and hop-by-hop flow control. Resolving this mismatch requires the switch to provide an additional buffer, which is not supported by the classic dynamic threshold (DT) policy in current shared-buffer commercial switches. In this paper, we propose Selective-PFC (SPFC), a practical buffer management scheme that handles such mismatch. Specifically, SPFC incrementally modifies DT by proactively detecting port traffic and adjusting buffer allocation accordingly to trigger PFC PAUSE frames selectively. Extensive case studies demonstrate that SPFC can reduce the number of PFC PAUSEs on non-bursty ports by up to 69.0%, and reduce the average flow completion time by up to 83.5% for large victim flows.\",\"PeriodicalId\":13443,\"journal\":{\"name\":\"IEEE/ACM Transactions on Networking\",\"volume\":\"32 6\",\"pages\":\"4749-4764\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE/ACM Transactions on Networking\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10606448/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10606448/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Re-Architecting Buffer Management in Lossless Ethernet
Converged Ethernet employs Priority-based Flow Control (PFC) to provide a lossless network. However, issues caused by PFC, including victim flow, congestion spreading, and deadlock, impede its large-scale deployment in production systems. The fine-grained experimental observations on switch buffer occupancy find that the root cause of these performance problems is a mismatch of sending rates between end-to-end congestion control and hop-by-hop flow control. Resolving this mismatch requires the switch to provide an additional buffer, which is not supported by the classic dynamic threshold (DT) policy in current shared-buffer commercial switches. In this paper, we propose Selective-PFC (SPFC), a practical buffer management scheme that handles such mismatch. Specifically, SPFC incrementally modifies DT by proactively detecting port traffic and adjusting buffer allocation accordingly to trigger PFC PAUSE frames selectively. Extensive case studies demonstrate that SPFC can reduce the number of PFC PAUSEs on non-bursty ports by up to 69.0%, and reduce the average flow completion time by up to 83.5% for large victim flows.
期刊介绍:
The IEEE/ACM Transactions on Networking’s high-level objective is to publish high-quality, original research results derived from theoretical or experimental exploration of the area of communication/computer networking, covering all sorts of information transport networks over all sorts of physical layer technologies, both wireline (all kinds of guided media: e.g., copper, optical) and wireless (e.g., radio-frequency, acoustic (e.g., underwater), infra-red), or hybrids of these. The journal welcomes applied contributions reporting on novel experiences and experiments with actual systems.