{"title":"PCDNF: Revisiting Learning-based Point Cloud Denoising via Joint Normal Filtering","authors":"Zheng Liu, Sijing Zhan, Ya-Ou Zhao, Yuanyuan Liu, Renjie Chen, Ying He","doi":"10.48550/arXiv.2209.00798","DOIUrl":"https://doi.org/10.48550/arXiv.2209.00798","url":null,"abstract":"Point cloud denoising is a fundamental and challenging problem in geometry processing. Existing methods typically involve direct denoising of noisy input or filtering raw normals followed by point position updates. Recognizing the crucial relationship between point cloud denoising and normal filtering, we re-examine this problem from a multitask perspective and propose an end-to-end network called PCDNF for joint normal filtering-based point cloud denoising. We introduce an auxiliary normal filtering task to enhance the network's ability to remove noise while preserving geometric features more accurately. Our network incorporates two novel modules. First, we design a shape-aware selector to improve noise removal performance by constructing latent tangent space representations for specific points, taking into account learned point and normal features as well as geometric priors. Second, we develop a feature refinement module to fuse point and normal features, capitalizing on the strengths of point features in describing geometric details and normal features in representing geometric structures, such as sharp edges and corners. This combination overcomes the limitations of each feature type and better recovers geometric information. Extensive evaluations, comparisons, and ablation studies demonstrate that the proposed method outperforms state-of-the-art approaches in both point cloud denoising and normal filtering.","PeriodicalId":13376,"journal":{"name":"IEEE Transactions on Visualization and Computer Graphics","volume":" ","pages":""},"PeriodicalIF":5.2,"publicationDate":"2022-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43075765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Graph Exploration with Embedding-Guided Layouts","authors":"Zhiwei Tai, Leixian Shen, Enya Shen, Jianmin Wang","doi":"10.48550/arXiv.2208.13699","DOIUrl":"https://doi.org/10.48550/arXiv.2208.13699","url":null,"abstract":"Node-link diagrams are widely used to visualize graphs. Most graph layout algorithms only use graph topology for aesthetic goals (e.g., minimize node occlusions and edge crossings) or use node attributes for exploration goals (e.g., preserve visible communities). Existing hybrid methods that bind the two perspectives still suffer from various generation restrictions (e.g., limited input types and required manual adjustments and prior knowledge of graphs) and the imbalance between aesthetic and exploration goals. In this paper, we propose a flexible embedding-based graph exploration pipeline to enjoy the best of both graph topology and node attributes. First, we leverage embedding algorithms for attributed graphs to encode the two perspectives into latent space. Then, we present an embedding-driven graph layout algorithm, GEGraph, which can achieve aesthetic layouts with better community preservation to support an easy interpretation of the graph structure. Next, graph explorations are extended based on the generated graph layout and insights extracted from the embedding vectors. Illustrated with examples, we build a layout-preserving aggregation method with Focus+Context interaction and a related nodes searching approach with multiple proximity strategies. Finally, we conduct quantitative and qualitative evaluations, a user study, and two case studies to validate our approach.","PeriodicalId":13376,"journal":{"name":"IEEE Transactions on Visualization and Computer Graphics","volume":" ","pages":""},"PeriodicalIF":5.2,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43234385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yiming Wang, Qingzhe Gao, Libin Liu, Lingjie Liu, C. Theobalt, B. Chen
{"title":"Neural Novel Actor: Learning a Generalized Animatable Neural Representation for Human Actors","authors":"Yiming Wang, Qingzhe Gao, Libin Liu, Lingjie Liu, C. Theobalt, B. Chen","doi":"10.48550/arXiv.2208.11905","DOIUrl":"https://doi.org/10.48550/arXiv.2208.11905","url":null,"abstract":"We propose a new method for learning a generalized animatable neural human representation from a sparse set of multi-view imagery of multiple persons. The learned representation can be used to synthesize novel view images of an arbitrary person and further animate them with the user's pose control. While most existing methods can either generalize to new persons or synthesize animations with user control, none of them can achieve both at the same time. We attribute this accomplishment to the employment of a 3D proxy for a shared multi-person human model, and further the warping of the spaces of different poses to a shared canonical pose space, in which we learn a neural field and predict the person- and pose-dependent deformations, as well as appearance with the features extracted from input images. To cope with the complexity of the large variations in body shapes, poses, and clothing deformations, we design our neural human model with disentangled geometry and appearance. Furthermore, we utilize the image features both at the spatial point and on the surface points of the 3D proxy for predicting person- and pose-dependent properties. Experiments show that our method significantly outperforms the state-of-the-arts on both tasks.","PeriodicalId":13376,"journal":{"name":"IEEE Transactions on Visualization and Computer Graphics","volume":" ","pages":""},"PeriodicalIF":5.2,"publicationDate":"2022-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48812024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hai Li, Xingrui Yang, Hongjia Zhai, Yuqian Liu, H. Bao, Guofeng Zhang
{"title":"Vox-Surf: Voxel-based Implicit Surface Representation","authors":"Hai Li, Xingrui Yang, Hongjia Zhai, Yuqian Liu, H. Bao, Guofeng Zhang","doi":"10.48550/arXiv.2208.10925","DOIUrl":"https://doi.org/10.48550/arXiv.2208.10925","url":null,"abstract":"Virtual content creation and interaction play an important role in modern 3D applications. Recovering detailed 3D models from real scenes can significantly expand the scope of its applications and has been studied for decades in the computer vision and computer graphics community. In this work, we propose Vox-Surf, a voxel-based implicit surface representation. Our Vox-Surf divides the space into finite sparse voxels, where each voxel is a basic geometry unit that stores geometry and appearance information on its corner vertices. Due to the sparsity inherited from the voxel representation, Vox-Surf is suitable for almost any scene and can be easily trained end-to-end from multiple view images. We utilize a progressive training process to gradually cull out empty voxels and keep only valid voxels for further optimization, which greatly reduces the number of sample points and improves inference speed. Experiments show that our Vox-Surf representation can learn fine surface details and accurate colors with less memory and faster rendering than previous methods. The resulting fine voxels can also be considered as the bounding volumes for collision detection, which is useful in 3D interactions. We also show the potential application of Vox-Surf in scene editing and augmented reality. The source code is publicly available at https://github.com/zju3dv/Vox-Surf.","PeriodicalId":13376,"journal":{"name":"IEEE Transactions on Visualization and Computer Graphics","volume":" ","pages":""},"PeriodicalIF":5.2,"publicationDate":"2022-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47088749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Martin-Gomez, Haowei Li, T. Song, Sheng Yang, Guangzhi Wang, H. Ding, Nassir Navab, Zhe Zhao, M. Armand
{"title":"STTAR: Surgical Tool Tracking using off-the-shelf Augmented Reality Head-Mounted Displays","authors":"A. Martin-Gomez, Haowei Li, T. Song, Sheng Yang, Guangzhi Wang, H. Ding, Nassir Navab, Zhe Zhao, M. Armand","doi":"10.48550/arXiv.2208.08880","DOIUrl":"https://doi.org/10.48550/arXiv.2208.08880","url":null,"abstract":"The use of Augmented Reality (AR) for navigation purposes has shown beneficial in assisting physicians during the performance of surgical procedures. These applications commonly require knowing the pose of surgical tools and patients to provide visual information that surgeons can use during the performance of the task. Existing medical-grade tracking systems use infrared cameras placed inside the Operating Room (OR) to identify retro-reflective markers attached to objects of interest and compute their pose. Some commercially available AR Head-Mounted Displays (HMDs) use similar cameras for self-localization, hand tracking, and estimating the objects' depth. This work presents a framework that uses the built-in cameras of AR HMDs to enable accurate tracking of retro-reflective markers without the need to integrate any additional electronics into the HMD. The proposed framework can simultaneously track multiple tools without having previous knowledge of their geometry and only requires establishing a local network between the headset and a workstation. Our results show that the tracking and detection of the markers can be achieved with an accuracy of 0.09±0.06 mm on lateral translation, 0.42 ±0.32 mm on longitudinal translation and 0.80 ±0.39° for rotations around the vertical axis. Furthermore, to showcase the relevance of the proposed framework, we evaluate the system's performance in the context of surgical procedures. This use case was designed to replicate the scenarios of k-wire insertions in orthopedic procedures. For evaluation, seven surgeons were provided with visual navigation and asked to perform 24 injections using the proposed framework. A second study with ten participants served to investigate the capabilities of the framework in the context of more general scenarios. Results from these studies provided comparable accuracy to those reported in the literature for AR-based navigation procedures.","PeriodicalId":13376,"journal":{"name":"IEEE Transactions on Visualization and Computer Graphics","volume":" ","pages":""},"PeriodicalIF":5.2,"publicationDate":"2022-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45200141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shaolun Ruan, Yong Wang, Weiwen Jiang, Y. Mao, Qian-Guo Guan
{"title":": A isualization pproah for Noie Awarenss in Quatum Computing","authors":"Shaolun Ruan, Yong Wang, Weiwen Jiang, Y. Mao, Qian-Guo Guan","doi":"10.1109/TVCG.2022.3209455","DOIUrl":"https://doi.org/10.1109/TVCG.2022.3209455","url":null,"abstract":"Quantum computing has attracted considerable public attention due to its exponential speedup over classical computing. Despite its advantages, today's quantum computers intrinsically suffer from noise and are error-prone. To guarantee the high fidelity of the execution result of a quantum algorithm, it is crucial to inform users of the noises of the used quantum computer and the compiled physical circuits. However, an intuitive and systematic way to make users aware of the quantum computing noise is still missing. In this paper, we fill the gap by proposing a novel visualization approach to achieve noise-aware quantum computing. It provides a holistic picture of the noise of quantum computing through multiple interactively coordinated views: a Computer Evolution View with a circuit-like design overviews the temporal evolution of the noises of different quantum computers, a Circuit Filtering View facilitates quick filtering of multiple compiled physical circuits for the same quantum algorithm, and a Circuit Comparison View with a coupled bar chart enables detailed comparison of the filtered compiled circuits. We extensively evaluate the performance of VACSEN through two case studies on quantum algorithms of different scales and in-depth interviews with 12 quantum computing users. The results demonstrate the effectiveness and usability of VACSEN in achieving noise-aware quantum computing.","PeriodicalId":13376,"journal":{"name":"IEEE Transactions on Visualization and Computer Graphics","volume":"29 1","pages":"462-472"},"PeriodicalIF":5.2,"publicationDate":"2022-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41592083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Path Tracing in 2D, 3D, and Physicalized Networks","authors":"Michael J. McGuffin, Ryan Servera, Marie Forest","doi":"10.48550/arXiv.2207.11586","DOIUrl":"https://doi.org/10.48550/arXiv.2207.11586","url":null,"abstract":"It is common to advise against using 3D to visualize abstract data such as networks, however Ware and Mitchell's 2008 study showed that path tracing in a network is less error prone in 3D than in 2D. It is unclear, however, if 3D retains its advantage when the 2D presentation of a network is improved using edge-routing, and when simple interaction techniques for exploring the network are available. We address this with two studies of path tracing under new conditions. The first study was preregistered, involved 34 users, and compared 2D and 3D layouts that the user could rotate and move in virtual reality with a handheld controller. Error rates were lower in 3D than in 2D, despite the use of edge-routing in 2D and the use of mouse-driven interactive highlighting of edges. The second study involved 12 users and investigated data physicalization, comparing 3D layouts in virtual reality versus physical 3D printouts of networks augmented with a Microsoft HoloLens headset. No difference was found in error rate, but users performed a variety of actions with their fingers in the physical condition which can inform new interaction techniques.","PeriodicalId":13376,"journal":{"name":"IEEE Transactions on Visualization and Computer Graphics","volume":" ","pages":""},"PeriodicalIF":5.2,"publicationDate":"2022-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43237315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"ScrollyVis: Interactive visual authoring of guided dynamic narratives for scientific scrollytelling","authors":"Eric Mörth, S. Bruckner, N. Smit","doi":"10.48550/arXiv.2207.03616","DOIUrl":"https://doi.org/10.48550/arXiv.2207.03616","url":null,"abstract":"Visual stories are an effective and powerful tool to convey specific information to a diverse public. Scrollytelling is a recent visual storytelling technique extensively used on the web, where content appears or changes as users scroll up or down a page. By employing the familiar gesture of scrolling as its primary interaction mechanism, it provides users with a sense of control, exploration and discoverability while still offering a simple and intuitive interface. In this paper, we present a novel approach for authoring, editing, and presenting data-driven scientific narratives using scrollytelling. Our method flexibly integrates common sources such as images, text, and video, but also supports more specialized visualization techniques such as interactive maps as well as scalar field and mesh data visualizations. We show that scrolling navigation can be used to traverse dynamic narratives and demonstrate how it can be combined with interactive parameter exploration. The resulting system consists of an extensible web-based authoring tool capable of exporting stand-alone stories that can be hosted on any web server. We demonstrate the power and utility of our approach with case studies from several diverse scientific fields and with a user study including 12 participants of diverse professional backgrounds. Furthermore, an expert in creating interactive articles assessed the usefulness of our approach and the quality of the created stories.","PeriodicalId":13376,"journal":{"name":"IEEE Transactions on Visualization and Computer Graphics","volume":" ","pages":""},"PeriodicalIF":5.2,"publicationDate":"2022-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44042439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Discrete Morse Sandwich: Fast Computation of Persistence Diagrams for Scalar Data - An Algorithm and A Benchmark","authors":"P. Guillou, Jules Vidal, Julien Tierny","doi":"10.48550/arXiv.2206.13932","DOIUrl":"https://doi.org/10.48550/arXiv.2206.13932","url":null,"abstract":"This paper introduces an efficient algorithm for persistence diagram computation, given an input piecewise linear scalar field f defined on a d-dimensional simplicial complex K, with d ≤ 3. Our work revisits the seminal algorithm \"PairSimplices\" [31], [103] with discrete Morse theory (DMT) [34], [80], which greatly reduces the number of input simplices to consider. Further, we also extend to DMT and accelerate the stratification strategy described in \"PairSimplices\" [31], [103] for the fast computation of the 0th and (d-1)th diagrams, noted D0(f) and Dd-1(f). Minima-saddle persistence pairs ( D0(f)) and saddle-maximum persistence pairs ( Dd-1(f)) are efficiently computed by processing , with a Union-Find , the unstable sets of 1-saddles and the stable sets of (d-1)-saddles. We provide a detailed description of the (optional) handling of the boundary component of K when processing (d-1)-saddles. This fast pre-computation for the dimensions 0 and (d-1) enables an aggressive specialization of [4] to the 3D case, which results in a drastic reduction of the number of input simplices for the computation of D1(f), the intermediate layer of the sandwich. Finally, we document several performance improvements via shared-memory parallelism. We provide an open-source implementation of our algorithm for reproducibility purposes. We also contribute a reproducible benchmark package, which exploits three-dimensional data from a public repository and compares our algorithm to a variety of publicly available implementations. Extensive experiments indicate that our algorithm improves by two orders of magnitude the time performance of the seminal \"PairSimplices\" algorithm it extends. Moreover, it also improves memory footprint and time performance over a selection of 14 competing approaches, with a substantial gain over the fastest available approaches, while producing a strictly identical output. We illustrate the utility of our contributions with an application to the fast and robust extraction of persistent 1-dimensional generators on surfaces, volume data and high-dimensional point clouds.","PeriodicalId":13376,"journal":{"name":"IEEE Transactions on Visualization and Computer Graphics","volume":" ","pages":""},"PeriodicalIF":5.2,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41751984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Adaptive color transfer from images to terrain visualizations","authors":"Mingguang Wu, Yanjie Sun, Shangjing Jiang","doi":"10.48550/arXiv.2205.14908","DOIUrl":"https://doi.org/10.48550/arXiv.2205.14908","url":null,"abstract":"Terrain mapping is not only dedicated to communicating how high or steep a landscape is but can also help to indicate how we feel about a place. However, crafting effective and expressive elevation colors is challenging for both nonexperts and experts. In this paper, we present a two-step image-to-terrain color transfer method that can transfer color from arbitrary images to diverse terrain models. First, we present a new image color organization method that organizes discrete, irregular image colors into a continuous, regular color grid that facilitates a series of color operations, such as local and global searching, categorical color selection and sequential color interpolation. Second, we quantify a series of subjective concerns about elevation color crafting, such as the \"lower, higher\" principle, color conventions, and aerial perspectives. We also define color similarity between images and terrain visualizations with aesthetic quality. We then mathematically formulate image-to-terrain color transfer as a dual-objective optimization problem and offer a heuristic searching method to solve the problem. Finally, we compare elevation colors from our method with a standard color scheme and a representative color scale generation tool based on four test terrains. The evaluations show that the elevation colors from the proposed method are most effective and that our results are visually favorable. We also showcase that our method can transfer emotion from images to terrain visualizations.","PeriodicalId":13376,"journal":{"name":"IEEE Transactions on Visualization and Computer Graphics","volume":" ","pages":""},"PeriodicalIF":5.2,"publicationDate":"2022-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45662815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}