{"title":"ScrollyVis: Interactive visual authoring of guided dynamic narratives for scientific scrollytelling","authors":"Eric Mörth, S. Bruckner, N. Smit","doi":"10.48550/arXiv.2207.03616","DOIUrl":null,"url":null,"abstract":"Visual stories are an effective and powerful tool to convey specific information to a diverse public. Scrollytelling is a recent visual storytelling technique extensively used on the web, where content appears or changes as users scroll up or down a page. By employing the familiar gesture of scrolling as its primary interaction mechanism, it provides users with a sense of control, exploration and discoverability while still offering a simple and intuitive interface. In this paper, we present a novel approach for authoring, editing, and presenting data-driven scientific narratives using scrollytelling. Our method flexibly integrates common sources such as images, text, and video, but also supports more specialized visualization techniques such as interactive maps as well as scalar field and mesh data visualizations. We show that scrolling navigation can be used to traverse dynamic narratives and demonstrate how it can be combined with interactive parameter exploration. The resulting system consists of an extensible web-based authoring tool capable of exporting stand-alone stories that can be hosted on any web server. We demonstrate the power and utility of our approach with case studies from several diverse scientific fields and with a user study including 12 participants of diverse professional backgrounds. Furthermore, an expert in creating interactive articles assessed the usefulness of our approach and the quality of the created stories.","PeriodicalId":13376,"journal":{"name":"IEEE Transactions on Visualization and Computer Graphics","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2022-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Visualization and Computer Graphics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.48550/arXiv.2207.03616","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 8
Abstract
Visual stories are an effective and powerful tool to convey specific information to a diverse public. Scrollytelling is a recent visual storytelling technique extensively used on the web, where content appears or changes as users scroll up or down a page. By employing the familiar gesture of scrolling as its primary interaction mechanism, it provides users with a sense of control, exploration and discoverability while still offering a simple and intuitive interface. In this paper, we present a novel approach for authoring, editing, and presenting data-driven scientific narratives using scrollytelling. Our method flexibly integrates common sources such as images, text, and video, but also supports more specialized visualization techniques such as interactive maps as well as scalar field and mesh data visualizations. We show that scrolling navigation can be used to traverse dynamic narratives and demonstrate how it can be combined with interactive parameter exploration. The resulting system consists of an extensible web-based authoring tool capable of exporting stand-alone stories that can be hosted on any web server. We demonstrate the power and utility of our approach with case studies from several diverse scientific fields and with a user study including 12 participants of diverse professional backgrounds. Furthermore, an expert in creating interactive articles assessed the usefulness of our approach and the quality of the created stories.
期刊介绍:
TVCG is a scholarly, archival journal published monthly. Its Editorial Board strives to publish papers that present important research results and state-of-the-art seminal papers in computer graphics, visualization, and virtual reality. Specific topics include, but are not limited to: rendering technologies; geometric modeling and processing; shape analysis; graphics hardware; animation and simulation; perception, interaction and user interfaces; haptics; computational photography; high-dynamic range imaging and display; user studies and evaluation; biomedical visualization; volume visualization and graphics; visual analytics for machine learning; topology-based visualization; visual programming and software visualization; visualization in data science; virtual reality, augmented reality and mixed reality; advanced display technology, (e.g., 3D, immersive and multi-modal displays); applications of computer graphics and visualization.