ImmunityPub Date : 2024-09-10DOI: 10.1016/j.immuni.2024.08.001
Janssen M. Kotah, Bart J.L. Eggen
{"title":"An anti-aging vaccine: BCG turns back the clock on remyelination failure","authors":"Janssen M. Kotah, Bart J.L. Eggen","doi":"10.1016/j.immuni.2024.08.001","DOIUrl":"https://doi.org/10.1016/j.immuni.2024.08.001","url":null,"abstract":"<p>Aging leads to alterations that precipitate or aggravate several diseases that occur across our lifespan. In the CNS, aging affects the capacity to maintain and repair the myelin sheaths that protect axons and facilitate neuronal signaling. Tiwari et al. report aging-associated transcriptional responses in microglia after demyelination, which could be reversed by epigenetic remodeling after BCG vaccination.</p>","PeriodicalId":13269,"journal":{"name":"Immunity","volume":"23 1","pages":""},"PeriodicalIF":32.4,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142161039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ImmunityPub Date : 2024-09-10DOI: 10.1016/j.immuni.2024.08.009
Sarah Adamo, Marcus Buggert
{"title":"The epigenomic matrix of tissue-specific immune memory","authors":"Sarah Adamo, Marcus Buggert","doi":"10.1016/j.immuni.2024.08.009","DOIUrl":"https://doi.org/10.1016/j.immuni.2024.08.009","url":null,"abstract":"<p>Tissue-resident memory CD8<sup>+</sup> T cells serve as a first-line defense against many pathogens. In this issue of <em>Immunity</em>, Buquicchio et al. unveil the epigenomic landscapes of virus-specific CD8<sup>+</sup> T cell subsets, highlighting common and organ-specific regulators driving their differentiation.</p>","PeriodicalId":13269,"journal":{"name":"Immunity","volume":"52 1","pages":""},"PeriodicalIF":32.4,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142161069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ImmunityPub Date : 2024-09-10DOI: 10.1016/j.immuni.2024.08.011
Eran Elinav, Suzanne Devkota, Marlies Meisel, Shu Zhu, Hiutung Chu, Haiwei Chen, Jens Puschhof, Florencia McAllister, Randall Jeffrey Platt, Kenya Honda
{"title":"Microbes and metabolites in immunity","authors":"Eran Elinav, Suzanne Devkota, Marlies Meisel, Shu Zhu, Hiutung Chu, Haiwei Chen, Jens Puschhof, Florencia McAllister, Randall Jeffrey Platt, Kenya Honda","doi":"10.1016/j.immuni.2024.08.011","DOIUrl":"https://doi.org/10.1016/j.immuni.2024.08.011","url":null,"abstract":"<p>The immune system has a vital, albeit complex, relationship with the microbes residing within us, one that we are only beginning to understand. We asked investigators what they felt were the fundamental challenges we currently face in unraveling the impacts of microbes and their metabolites on host immunity and to discuss key opportunities toward achieving future insights and innovation.</p>","PeriodicalId":13269,"journal":{"name":"Immunity","volume":"19 1","pages":""},"PeriodicalIF":32.4,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142161036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ImmunityPub Date : 2024-09-10DOI: 10.1016/j.immuni.2024.08.010
Saad Khan, Veronica Chang, Daniel A. Winer
{"title":"The inflammaging clock strikes IL-11!","authors":"Saad Khan, Veronica Chang, Daniel A. Winer","doi":"10.1016/j.immuni.2024.08.010","DOIUrl":"https://doi.org/10.1016/j.immuni.2024.08.010","url":null,"abstract":"<p>Chronic inflammation is considered a hallmark of aging. In a recent issue of <em>Nature</em>, Widjaja et al. examined genetic and pharmacologic inhibition of interleukin (IL)-11 on aging pathology and found that inhibiting IL-11 signaling increases lifespan and healthspan in mice.</p>","PeriodicalId":13269,"journal":{"name":"Immunity","volume":"35 1","pages":""},"PeriodicalIF":32.4,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142161040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ImmunityPub Date : 2024-09-10Epub Date: 2024-08-15DOI: 10.1016/j.immuni.2024.07.020
Laurence Zitvogel, Marine Fidelle, Guido Kroemer
{"title":"Long-distance microbial mechanisms impacting cancer immunosurveillance.","authors":"Laurence Zitvogel, Marine Fidelle, Guido Kroemer","doi":"10.1016/j.immuni.2024.07.020","DOIUrl":"10.1016/j.immuni.2024.07.020","url":null,"abstract":"<p><p>The intestinal microbiota determines immune responses against extraintestinal antigens, including tumor-associated antigens. Indeed, depletion or gross perturbation of the microbiota undermines the efficacy of cancer immunotherapy, thereby compromising the clinical outcome of cancer patients. In this review, we discuss the long-distance effects of the gut microbiota and the mechanisms governing antitumor immunity, such as the translocation of intestinal microbes into tumors, migration of leukocyte populations from the gut to the rest of the body, including tumors, as well as immunomodulatory microbial products and metabolites. The relationship between these pathways is incompletely understood, in particular the significance of the tumor microbiota with respect to the identification of host and/or microbial products that regulate the egress of bacteria and immunocytes toward tumor beds.</p>","PeriodicalId":13269,"journal":{"name":"Immunity","volume":" ","pages":"2013-2029"},"PeriodicalIF":25.5,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141995691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ImmunityPub Date : 2024-09-10DOI: 10.1016/j.immuni.2024.08.006
Yanxia Rao, Bo Peng
{"title":"Microglia bridge brain activity and blood pressure","authors":"Yanxia Rao, Bo Peng","doi":"10.1016/j.immuni.2024.08.006","DOIUrl":"https://doi.org/10.1016/j.immuni.2024.08.006","url":null,"abstract":"<p>Our brain is not an immune-privileged island isolated from peripheries, but how non-neuronal brain cells interact with the peripheral system is not well understood. Wei et al. report that microglia in the hypothalamic paraventricular nucleus (PVN) with unique vasculature can detect ATP derived from hemodynamic disturbance. These microglia in the PVN regulate the response to hypertension via ATP-P2Y12-C/EBPβ signaling.</p>","PeriodicalId":13269,"journal":{"name":"Immunity","volume":"82 1","pages":""},"PeriodicalIF":32.4,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142161037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ImmunityPub Date : 2024-09-10Epub Date: 2024-08-16DOI: 10.1016/j.immuni.2024.07.021
Sarah J Sun, Raúl Aguirre-Gamboa, L Charlotte J de Bree, Joaquin Sanz, Anne Dumaine, Walter J F M van der Velden, Leo A B Joosten, Shabaana Khader, Maziar Divangahi, Mihai G Netea, Luis B Barreiro
{"title":"BCG vaccination alters the epigenetic landscape of progenitor cells in human bone marrow to influence innate immune responses.","authors":"Sarah J Sun, Raúl Aguirre-Gamboa, L Charlotte J de Bree, Joaquin Sanz, Anne Dumaine, Walter J F M van der Velden, Leo A B Joosten, Shabaana Khader, Maziar Divangahi, Mihai G Netea, Luis B Barreiro","doi":"10.1016/j.immuni.2024.07.021","DOIUrl":"10.1016/j.immuni.2024.07.021","url":null,"abstract":"<p><p>Although the Bacille-Calmette-Guérin (BCG) vaccine is used to prevent tuberculosis, it also offers protection against a diverse range of non-mycobacterial infections. However, the underlying protective mechanisms in humans are not yet fully understood. Here, we surveyed at single-cell resolution the gene expression and chromatin landscape of human bone marrow, aspirated before and 90 days after BCG vaccination or placebo. We showed that BCG alters both the gene expression and epigenetic profiles of human hematopoietic stem and progenitor cells (HSPCs). Changes in gene expression occurred primarily within uncommitted stem cells. By contrast, changes in chromatin accessibility were most prevalent within differentiated progenitor cells at sites influenced by Kruppel-like factor (KLF) and early growth response (EGR) transcription factors and were highly correlated (r > 0.8) with the interleukin (IL)-1β secretion capacity of paired peripheral blood mononuclear cells (PBMCs). Our findings shed light on BCG vaccination's profound and lasting effects on HSPCs and its influence on innate immune responses and trained immunity.</p>","PeriodicalId":13269,"journal":{"name":"Immunity","volume":" ","pages":"2095-2107.e8"},"PeriodicalIF":25.5,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141995690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ImmunityPub Date : 2024-09-10Epub Date: 2024-08-15DOI: 10.1016/j.immuni.2024.07.019
Emile Wogram, Felix Sümpelmann, Wentao Dong, Eshaan Rawat, Inés Fernández Maestre, Dongdong Fu, Brandyn Braswell, Andrew Khalil, Joerg M Buescher, Gerhard Mittler, Georg H H Borner, Andreas Vlachos, Stefan Tholen, Oliver Schilling, George W Bell, Angelika S Rambold, Asifa Akhtar, Oliver Schnell, Jürgen Beck, Monther Abu-Remaileh, Marco Prinz, Rudolf Jaenisch
{"title":"Rapid phagosome isolation enables unbiased multiomic analysis of human microglial phagosomes.","authors":"Emile Wogram, Felix Sümpelmann, Wentao Dong, Eshaan Rawat, Inés Fernández Maestre, Dongdong Fu, Brandyn Braswell, Andrew Khalil, Joerg M Buescher, Gerhard Mittler, Georg H H Borner, Andreas Vlachos, Stefan Tholen, Oliver Schilling, George W Bell, Angelika S Rambold, Asifa Akhtar, Oliver Schnell, Jürgen Beck, Monther Abu-Remaileh, Marco Prinz, Rudolf Jaenisch","doi":"10.1016/j.immuni.2024.07.019","DOIUrl":"10.1016/j.immuni.2024.07.019","url":null,"abstract":"<p><p>Microglia are the resident macrophages of the central nervous system (CNS). Their phagocytic activity is central during brain development and homeostasis-and in a plethora of brain pathologies. However, little is known about the composition, dynamics, and function of human microglial phagosomes under homeostatic and pathological conditions. Here, we developed a method for rapid isolation of pure and intact phagosomes from human pluripotent stem cell-derived microglia under various in vitro conditions, and from human brain biopsies, for unbiased multiomic analysis. Phagosome profiling revealed that microglial phagosomes were equipped to sense minute changes in their environment and were highly dynamic. We detected proteins involved in synapse homeostasis, or implicated in brain pathologies, and identified the phagosome as the site where quinolinic acid was stored and metabolized for de novo nicotinamide adenine dinucleotide (NAD<sup>+</sup>) generation in the cytoplasm. Our findings highlight the central role of phagosomes in microglial functioning in the healthy and diseased brain.</p>","PeriodicalId":13269,"journal":{"name":"Immunity","volume":" ","pages":"2216-2231.e11"},"PeriodicalIF":25.5,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141995692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ImmunityPub Date : 2024-09-10Epub Date: 2024-08-20DOI: 10.1016/j.immuni.2024.07.023
Zhe Li, Anna Obraztsova, Fuwei Shang, Opeyemi Ernest Oludada, Joshua Malapit, Katrin Busch, Monique van Straaten, Erec Stebbins, Rajagopal Murugan, Hedda Wardemann
{"title":"Affinity-independent memory B cell origin of the early antibody-secreting cell response in naive individuals upon SARS-CoV-2 vaccination.","authors":"Zhe Li, Anna Obraztsova, Fuwei Shang, Opeyemi Ernest Oludada, Joshua Malapit, Katrin Busch, Monique van Straaten, Erec Stebbins, Rajagopal Murugan, Hedda Wardemann","doi":"10.1016/j.immuni.2024.07.023","DOIUrl":"10.1016/j.immuni.2024.07.023","url":null,"abstract":"<p><p>Memory B cells (MBCs) formed over the individual's lifetime constitute nearly half of the circulating B cell repertoire in humans. These pre-existing MBCs dominate recall responses to their cognate antigens, but how they respond to recognition of novel antigens is not well understood. Here, we tracked the origin and followed the differentiation paths of MBCs in the early anti-spike (S) response to mRNA vaccination in SARS-CoV-2-naive individuals on single-cell and monoclonal antibody levels. Pre-existing, highly mutated MBCs showed no signs of germinal center re-entry and rapidly developed into mature antibody-secreting cells (ASCs). By contrast, and despite similar levels of S reactivity, naive B cells showed strong signs of antibody affinity maturation before differentiating into MBCs and ASCs. Thus, pre-existing human MBCs differentiate into ASCs in response to novel antigens, but the quality of the humoral and cellular anti-S response improved through the clonal selection and affinity maturation of naive precursors.</p>","PeriodicalId":13269,"journal":{"name":"Immunity","volume":" ","pages":"2191-2201.e5"},"PeriodicalIF":25.5,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142017306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ImmunityPub Date : 2024-09-04DOI: 10.1016/j.immuni.2024.08.008
Dongkyun Kim, Giha Kim, Rongzhen Yu, Juyeun Lee, Sohee Kim, Mia R. Gleason, Kevin Qiu, Elena Montauti, Li Lily Wang, Deyu Fang, Jaehyuk Choi, Navdeep S. Chandel, Samuel Weinberg, Booki Min
{"title":"Inhibitory co-receptor Lag3 supports Foxp3+ regulatory T cell function by restraining Myc-dependent metabolic programming","authors":"Dongkyun Kim, Giha Kim, Rongzhen Yu, Juyeun Lee, Sohee Kim, Mia R. Gleason, Kevin Qiu, Elena Montauti, Li Lily Wang, Deyu Fang, Jaehyuk Choi, Navdeep S. Chandel, Samuel Weinberg, Booki Min","doi":"10.1016/j.immuni.2024.08.008","DOIUrl":"https://doi.org/10.1016/j.immuni.2024.08.008","url":null,"abstract":"<p>Lymphocyte activation gene 3 (Lag3) is an inhibitory co-receptor expressed on activated T cells and has been proposed to regulate regulatory T (Treg) cell function. However, its precise modality and mechanisms remain elusive. We generated Treg cell-specific Lag3-mutant mouse models and found that Lag3 was essential for Treg cell control of autoimmunity. RNA sequencing analysis revealed that Lag3 mutation altered genes associated with metabolic processes, especially Myc target genes. Myc expression in Lag3-mutant Treg cells was increased to the level seen in conventional T helper (Th)1-type effector cells and directly correlated with their metabolic profiles and <em>in vivo</em> suppressive functions. The phosphatidylinositol 3-kinase (PI3K)-Akt-Rictor pathway was activated in Lag3-mutant Treg cells, and inhibiting PI3K, Rictor, or lactate dehydrogenase A (Ldha), a key Myc target enzyme converting pyruvate to lactate, was sufficient to restore normal metabolism and suppressive function in Lag3-mutant Treg cells. These findings indicate that Lag3 supports Treg cell suppression partly by tuning Myc-dependent metabolic programming.</p>","PeriodicalId":13269,"journal":{"name":"Immunity","volume":"12 1","pages":""},"PeriodicalIF":32.4,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142138211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}