{"title":"How Will the New Global Polycystic Ovary Syndrome Guideline Change Our Clinical Practice?","authors":"Susie Jacob, Adam H Balen","doi":"10.1177/1179558119849605","DOIUrl":"10.1177/1179558119849605","url":null,"abstract":"<p><p>Polycystic ovary syndrome (PCOS) is a far reaching condition that has a number of reproductive and general health implications. There has been much debate in recent years about the diagnosis and definition of PCOS and a plethora of studies assessing its management, ranging from the psychosocial aspects of the conditions, to the treatment of hyperandrogenism, anovulatory infertility, and the long-term metabolic and reproductive consequences. There has been a need to synthesise the evidence and produce an international consensus guideline for all aspects of the management of PCOS and this was achieved with the publication of the <i>International evidence-based guideline for the assessment and management of polycystic ovary syndrome</i>. The guideline is broadly categorised into 5 sections, which focus on diagnosis, holistic management and safe, effective fertility treatment. This article summarises the key points of the guidance and brings the management of PCOS up to date for the 21st century.</p>","PeriodicalId":13243,"journal":{"name":"IEEE Journal on Selected Areas in Communications","volume":"25 1","pages":"1179558119849605"},"PeriodicalIF":0.0,"publicationDate":"2019-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6610395/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84354767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"IEEE Communications Society Information","authors":"","doi":"10.1109/jsac.2018.2883229","DOIUrl":"https://doi.org/10.1109/jsac.2018.2883229","url":null,"abstract":"","PeriodicalId":13243,"journal":{"name":"IEEE Journal on Selected Areas in Communications","volume":" ","pages":""},"PeriodicalIF":16.4,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/jsac.2018.2883229","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48885344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Delay-Constrained Input-Queued Switch","authors":"Lei Deng, W. Wong, Po-Ning Chen, Y. Han","doi":"10.1145/3209582.3225206","DOIUrl":"https://doi.org/10.1145/3209582.3225206","url":null,"abstract":"In this paper, we study the delay-constrained input-queued switch, where each packet has a deadline and it will expire if it is not delivered before its deadline. Such new scenario is motivated by the proliferation of real-time applications in multimedia communication systems, tactile Internet, networked controlled systems, and cyber-physical systems. The delay-constrained input-queued switch is completely different from the well-understood delay-unconstrained one and thus poses new challenges. We focus on three fundamental problems centering around the performance metric of timely throughput: (i) how to characterize the capacity region? (ii) how to design a feasibility/throughput-optimal scheduling policy? and (iii) how to design a network-utility-maximization scheduling policy? We use three different approaches to solve these three fundamental problems. The first approach is based on Markov Decision Process (MDP) theory, which can solve all three problems. However, it suffers from the curse of dimensionality. The second approach breaks the curse of dimensionality by exploiting the combinatorial features of the problem. It gives a new capacity region characterization with only a polynomial number of linear constraints. The third approach is based on the framework of Lyapunov optimization, where we design a polynomial-time maximum-weight $T$ -disjoint-matching scheduling policy which is proved to be feasibility/throughput-optimal. Our three approaches apply to the frame-synchronized traffic pattern but our MDP-based approach can be extended to more general traffic patterns.","PeriodicalId":13243,"journal":{"name":"IEEE Journal on Selected Areas in Communications","volume":"36 1","pages":"2464-2474"},"PeriodicalIF":16.4,"publicationDate":"2018-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/3209582.3225206","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42441469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Implicit Coordination of Caches in Small Cell Networks Under Unknown Popularity Profiles","authors":"Emilio Leonardi, G. Neglia","doi":"10.1145/3266276.3266282","DOIUrl":"https://doi.org/10.1145/3266276.3266282","url":null,"abstract":"We focus on a dense cellular network, in which a limited-size cache is available at every base station (BS). In order to optimize the overall performance of the system in such scenario, where a significant fraction of the users is covered by several BSs, a tight coordination among nearby caches is needed. To this end, this paper introduces a class of simple and fully distributed caching policies, which require neither direct communication among BSs nor a priori knowledge of content popularity. Furthermore, we propose a novel approximate analytical methodology to assess the performance of interacting caches under such policies. Our approach builds upon the well-known characteristic time approximation [1] and provides predictions that are surprisingly accurate (hardly distinguishable from the simulations) in most of the scenarios. Both synthetic and trace-driven results show that our caching policies achieve an excellent performance (in some cases provably optimal). They outperform state-of-the-art dynamic policies for interacting caches, and, in some cases, also the greedy content placement, which is known to be the best performing polynomial algorithm under static and perfectly known content popularity profiles.","PeriodicalId":13243,"journal":{"name":"IEEE Journal on Selected Areas in Communications","volume":"36 1","pages":"1276-1285"},"PeriodicalIF":16.4,"publicationDate":"2018-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/3266276.3266282","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43054405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Secure Transmission and Self-Energy Recycling for Wireless-Powered Relay Systems with Partial Eavesdropper Channel State Information","authors":"Jingping Qiao, Haixia Zhang, Feng Zhao, D. Yuan","doi":"10.1109/JSAC.2018.2825541","DOIUrl":"https://doi.org/10.1109/JSAC.2018.2825541","url":null,"abstract":"This paper focuses on the secure transmission of wireless-powered relay systems with imperfect eavesdropper channel state information (ECSI). For efficient energy transfer and information relaying, a novel two-phase protocol is proposed, in which the relay operates in full-duplex (FD) mode to achieve simultaneous wireless power and information transmission. Compared with those existing protocols, the proposed design possesses two main advantages: 1) it fully exploits the available hardware resource (antenna element) of relay and can offer higher secrecy rate; 2) it enables self-energy recycling (S-ER) at relay, in which the loopback interference (LI) generated by FD operation is harvested and reused for information relaying. To maximize the worst-case secrecy rate (WCSR) through jointly designing the source and relay beamformers coupled with the power allocation ratio, an optimization problem is formulated. This formulated problem is proved to be non-convex and the challenge to solve it is how to concurrently solve out the beamformers and the power allocation ratio. To cope with this difficulty, an alternative approach is proposed by converting the original problem into three subproblems. By solving these subproblems iteratively, the closed form solutions of robust beamformers and power allocation ratio for the original problem are achieved. Simulations are done and results reveal that the proposed S-ER based secure transmission scheme outperforms the traditional time-switching based relaying (TSR) scheme at a maximum WCSR gain of 80%. Results also demonstrate that the WCSR performance of the scheme reusing idle antennas for information reception is much better than that of schemes exploiting only one receive antenna.","PeriodicalId":13243,"journal":{"name":"IEEE Journal on Selected Areas in Communications","volume":"95 1","pages":""},"PeriodicalIF":16.4,"publicationDate":"2017-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/JSAC.2018.2825541","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"62351137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mathias Fischer, M. Brunner, A. Dutta, Toktam Mahmoodi
{"title":"Guest Editorial Emerging Technologies in Software- Driven Communication","authors":"Mathias Fischer, M. Brunner, A. Dutta, Toktam Mahmoodi","doi":"10.1109/JSAC.2017.2760479","DOIUrl":"https://doi.org/10.1109/JSAC.2017.2760479","url":null,"abstract":"Computer networks fundamentally changed the way we communicate and interact with each other. In fact, they now form the backbone of our modern societies. While early networks were merely a mechanism for exchanging data between end-hosts, current computer and telecommunication networks are way more than that. Compared to the early days of the networking not only the hardware of networks has changed fundamentally, but with it also the software deployed to control and manage these networks. To reduce the significant management cost of large networks, automated management, including autonomic computing and communications evolved.","PeriodicalId":13243,"journal":{"name":"IEEE Journal on Selected Areas in Communications","volume":"45 1","pages":"2429-2430"},"PeriodicalIF":16.4,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85374164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiaqi Zheng, Guihai Chen, S. Schmid, Haipeng Dai, Jie Wu, Q. Ni
{"title":"Scheduling Congestion- and Loop-Free Network Update in Timed SDNs","authors":"Jiaqi Zheng, Guihai Chen, S. Schmid, Haipeng Dai, Jie Wu, Q. Ni","doi":"10.1109/JSAC.2017.2760146","DOIUrl":"https://doi.org/10.1109/JSAC.2017.2760146","url":null,"abstract":"Software-defined networks (SDNs) introduce interesting new opportunities in how network routes can be defined, verified, and changed over time. Despite the logically-centralized perspective offered, however, an SDN still needs to be considered a distributed system: rule updates communicated from the controller to the individual switches traverse an asynchronous network and may arrive out-of-order. This can lead to (temporary or permanent) inconsistencies and triggered much research over the last years. We, in this paper, initiate the study of algorithms for consistent network updates in “timed SDNs”—SDNs in which individual node updates can be scheduled at specific times. While technology enabling tightly synchronized SDNs is emerging, the resulting algorithmic problems have not been studied yet. This paper presents, implements and evaluates Chronus, a system which provides provably congestion- and loop-free network updates, while avoiding the flow table space headroom required by existing two-phase update approaches. We formulate the minimum update time problem as an optimization program and propose two polynomial-time algorithms which lie at the heart of Chronus: a decision algorithm to check feasibility and a greedy algorithm to find a good update sequence. Extensive experiments on Mininet and numerical simulations show that Chronus can substantially reduce transient congestion and save over 60% of the rules compared with the state of the art.","PeriodicalId":13243,"journal":{"name":"IEEE Journal on Selected Areas in Communications","volume":"35 1","pages":"2542-2552"},"PeriodicalIF":16.4,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/JSAC.2017.2760146","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46432264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Joint Optimization of Service Function Placement and Flow Distribution for Service Function Chaining","authors":"Insun Jang, Dongeun Suh, Sangheon Pack, G. Dán","doi":"10.1109/JSAC.2017.2760162","DOIUrl":"https://doi.org/10.1109/JSAC.2017.2760162","url":null,"abstract":"In this paper, we consider the problem of optimal dynamic service function (SF) placement and flow routing in a SF chaining (SFC) enabled network. We formulate a multi-objective optimization problem to maximize the acceptable flow rate and to minimize the energy cost for multiple service chains. We transform the multi-objective optimization problem into a single-objective mixed integer linear programming (MILP) problem, and prove that the problem is NP-hard. We propose a polynomial time algorithm based on linear relaxation and rounding to approximate the optimal solution of the MILP. Extensive simulations are conducted to evaluate the effects of the energy budget, the network topology, and the amount of server resources on the acceptable flow rate. The results demonstrate that the proposed algorithm can achieve near-optimal performance and can significantly increase the acceptable flow rate and the service capacity compared to other algorithms under an energy cost budget.","PeriodicalId":13243,"journal":{"name":"IEEE Journal on Selected Areas in Communications","volume":"35 1","pages":"2532-2541"},"PeriodicalIF":16.4,"publicationDate":"2017-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/JSAC.2017.2760162","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46292620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
G. Antichi, Ignacio Castro, Marco Chiesa, E. L. Fernandes, Remy Lapeyrade, Daniel Kopp, J. H. Han, M. Bruyère, C. Dietzel, M. Gusat, A. Moore, P. Owezarski, S. Uhlig, M. Canini
{"title":"ENDEAVOUR: A Scalable SDN Architecture For Real-World IXPs","authors":"G. Antichi, Ignacio Castro, Marco Chiesa, E. L. Fernandes, Remy Lapeyrade, Daniel Kopp, J. H. Han, M. Bruyère, C. Dietzel, M. Gusat, A. Moore, P. Owezarski, S. Uhlig, M. Canini","doi":"10.1109/JSAC.2017.2760398","DOIUrl":"https://doi.org/10.1109/JSAC.2017.2760398","url":null,"abstract":"Innovation in interdomain routing has remained stagnant for over a decade. Recently, Internet eXchange Points (IXPs) have emerged as economically-advantageous interconnection points for reducing path latencies and exchanging ever increasing traffic volumes among, possibly, hundreds of networks. Given their far-reaching implications on interdomain routing, IXPs are the ideal place to foster network innovation and extend the benefits of software defined networking (SDN) to the interdomain level. In this paper, we present, evaluate, and demonstrate ENDEAVOUR, an SDN platform for IXPs. ENDEAVOUR can be deployed on a multi-hop IXP fabric, supports a large number of use cases, and is highly scalable, while avoiding broadcast storms. Our evaluation with real data from one of the largest IXPs, demonstrates the benefits and scalability of our solution: ENDEAVOUR requires around 70% fewer rules than alternative SDN solutions thanks to our rule partitioning mechanism. In addition, by providing an open source solution, we invite everyone from the community to experiment (and improve) our implementation as well as adapt it to new use cases.","PeriodicalId":13243,"journal":{"name":"IEEE Journal on Selected Areas in Communications","volume":"35 1","pages":"2553-2562"},"PeriodicalIF":16.4,"publicationDate":"2017-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/JSAC.2017.2760398","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42519426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhongliang Zhao, Eryk Schiller, Eirini Kalogeiton, T. Braun, B. Stiller, Mevlut Turker Garip, Joshua Joy, M. Gerla, Nabeel Akhtar, I. Matta
{"title":"Autonomic Communications in Software-Driven Networks","authors":"Zhongliang Zhao, Eryk Schiller, Eirini Kalogeiton, T. Braun, B. Stiller, Mevlut Turker Garip, Joshua Joy, M. Gerla, Nabeel Akhtar, I. Matta","doi":"10.1109/JSAC.2017.2760354","DOIUrl":"https://doi.org/10.1109/JSAC.2017.2760354","url":null,"abstract":"Autonomic communications aim to provide the quality-of-service in networks using self-management mechanisms. It inherits many characteristics from autonomic computing, in particular, when communication systems are running as specialized applications in software-defined networking (SDN) and network function virtualization (NFV)-enabled cloud environments. This paper surveys autonomic computing and communications in the context of software-driven networks, i.e., networks based on SDN/NFV concepts. Autonomic communications create new challenges in terms of security, operations, and business support. We discuss several goals, research challenges, and development issues on self-management mechanisms and architectures in software-driven networks. This paper covers multiple perspectives of autonomic communications in software-driven networks, such as automatic testing, integration, and deployment of network functions. We also focus on self-management and optimization, which make use of machine learning techniques.","PeriodicalId":13243,"journal":{"name":"IEEE Journal on Selected Areas in Communications","volume":"35 1","pages":"2431-2445"},"PeriodicalIF":16.4,"publicationDate":"2017-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/JSAC.2017.2760354","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42961035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}