Human Cell最新文献

筛选
英文 中文
Astragaloside IV alleviates senescence of vascular smooth muscle cells through activating Parkin-mediated mitophagy. 黄芪甲苷通过激活帕金森介导的有丝分裂来缓解血管平滑肌细胞的衰老。
IF 4.3 3区 生物学
Human Cell Pub Date : 2022-11-01 Epub Date: 2022-08-04 DOI: 10.1007/s13577-022-00758-6
Huijun Li, Jialin Xu, Yanan Zhang, Lei Hong, Zhijian He, Zhiheng Zeng, Li Zhang
{"title":"Astragaloside IV alleviates senescence of vascular smooth muscle cells through activating Parkin-mediated mitophagy.","authors":"Huijun Li,&nbsp;Jialin Xu,&nbsp;Yanan Zhang,&nbsp;Lei Hong,&nbsp;Zhijian He,&nbsp;Zhiheng Zeng,&nbsp;Li Zhang","doi":"10.1007/s13577-022-00758-6","DOIUrl":"https://doi.org/10.1007/s13577-022-00758-6","url":null,"abstract":"<p><p>Astragaloside IV (AS-IV), as one of the main active components of Astragalus membranaceus, has been reported to have cardiovascular protective effects. However, the role and molecular mechanism of AS-IV in vascular senescence have not been clearly stated. The in vitro aging model was constructed using bleomycin (BLM) in vascular smooth muscle cells (VSMCs). Cell senescence were assessed through Western blotting analysis of aging markers, flow cytometry, and the β-galactosidase (SA-β-Gal) kit. Mitophagy was determined through transmission electron microscopy, TMRM staining, and Western blotting analysis of p62. A model of aging blood vessels was induced by D-gal. The vascular wall thickness of mice was also evaluated by H&E staining. Our data proved that AS-IV plays an anti-senescent role in vitro and in vivo. Results showed that AS-IV effectively improved mitochondrial injury, raised MMP, and mediated mitophagy in BLM-induced senescent VSMCs and D-gal induced aging mice. Parkin expression strengthened AS-IV's anti-senescent function. In conclusions, AS-IV attenuated BLM-induced VSMC senescence via Parkin to regulate mitophagy. Therefore, AS-IV-mediated Parkin might be a latent therapeutic agent and target for VSMC senescence.</p>","PeriodicalId":13228,"journal":{"name":"Human Cell","volume":"35 6","pages":"1684-1696"},"PeriodicalIF":4.3,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9515037/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40691571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
METTL3 promotes m6A hypermethylation of RBM14 via YTHDF1 leading to the progression of hepatocellular carcinoma. METTL3通过YTHDF1促进RBM14的m6A超甲基化,导致肝细胞癌的进展。
IF 4.3 3区 生物学
Human Cell Pub Date : 2022-11-01 Epub Date: 2022-09-10 DOI: 10.1007/s13577-022-00769-3
Jingyao Hu, Liang Yang, Xueqiang Peng, Minghuan Mao, Xiaodan Liu, Jianbo Song, Hangyu Li, Fu Chen
{"title":"METTL3 promotes m6A hypermethylation of RBM14 via YTHDF1 leading to the progression of hepatocellular carcinoma.","authors":"Jingyao Hu,&nbsp;Liang Yang,&nbsp;Xueqiang Peng,&nbsp;Minghuan Mao,&nbsp;Xiaodan Liu,&nbsp;Jianbo Song,&nbsp;Hangyu Li,&nbsp;Fu Chen","doi":"10.1007/s13577-022-00769-3","DOIUrl":"https://doi.org/10.1007/s13577-022-00769-3","url":null,"abstract":"<p><p>Liver is a well-known immunological organ with unique microenvironment. In normal conditions, the rich immune-infiltrating cells cooperate with non-parenchymal cells, such as Kupffer cells (KCs). The presence of liver immunosuppressive microenvironment underlines the importance to dissect this interaction to understand how this cross-talk promotes tumor growth in hepatocellular carcinoma (HCC). Therefore, the aim of the study here was to probe the role of methyltransferase-like 3 (METTL3) in the HCC progression and its effect on the polarization of KCs. KCs showed M2 polarization, and METTL3 was overexpressed in our collected HCC tissues relative to adjacent tissues. METTL3 depletion inhibited the M2 polarization of KCs, thereby reverting the malignant phenotype of HCC cells in vitro and growth and metastasis in vivo. Mechanistically, YTH domain-containing family protein 1 (YTHDF1) bound to RNA-binding protein 14 (RBM14), whereas METTL3 knockdown in KCs cells suppressed RBM14 expression by decreasing N-methyladenosine (m6A) methylation. Overexpression of RBM14 mitigated the anti-tumor effects of sh-METTL3 in vitro and in vivo. It is suggested that the mechanism of sh-METTL3 suppressing the polarization of KCs and the progression of HCC is to regulate the RBM14 expression via YTHDF1-dependent m6A modification.</p>","PeriodicalId":13228,"journal":{"name":"Human Cell","volume":" ","pages":"1838-1855"},"PeriodicalIF":4.3,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33458313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
MicroRNA-149-3p expression correlates with outcomes of adrenocortical tumor patients and affects proliferation and cell cycle progression of H295A adrenocortical cancer cell line. MicroRNA-149-3p的表达与肾上腺皮质肿瘤患者的预后相关,影响H295A肾上腺皮质癌细胞系的增殖和细胞周期进展。
IF 4.3 3区 生物学
Human Cell Pub Date : 2022-11-01 Epub Date: 2022-09-02 DOI: 10.1007/s13577-022-00778-2
Keteryne Rodrigues da Silva, Luciana Chain Veronez, Carolina Alves Pereira Correa, Régia Caroline Peixoto Lira, Mirella Baroni, Rosane de Paula Silva Queiroz, Sonir Roberto Rauber Antonini, José Andres Yunes, Silvia Regina Brandalise, Luiz Gonzaga Tone, Carlos Alberto Scrideli
{"title":"MicroRNA-149-3p expression correlates with outcomes of adrenocortical tumor patients and affects proliferation and cell cycle progression of H295A adrenocortical cancer cell line.","authors":"Keteryne Rodrigues da Silva,&nbsp;Luciana Chain Veronez,&nbsp;Carolina Alves Pereira Correa,&nbsp;Régia Caroline Peixoto Lira,&nbsp;Mirella Baroni,&nbsp;Rosane de Paula Silva Queiroz,&nbsp;Sonir Roberto Rauber Antonini,&nbsp;José Andres Yunes,&nbsp;Silvia Regina Brandalise,&nbsp;Luiz Gonzaga Tone,&nbsp;Carlos Alberto Scrideli","doi":"10.1007/s13577-022-00778-2","DOIUrl":"https://doi.org/10.1007/s13577-022-00778-2","url":null,"abstract":"<p><p>Pediatric adrenocortical tumor (ACT) is a rare and aggressive neoplasm, with incidence in southern and southeastern Brazil 10-15 times higher than worldwide. Although microRNAs (miRNAs) have been reported to act as tumor suppressors or oncogenes in several cancers, the role of miR-149-3p in ACT remains unknown. In this study, we evaluated the expression of miR-149-3p in 67 pediatric ACT samples and 19 non-neoplastic adrenal tissues. The overexpression of miR-149-3p was induced in H295A cell line, and cell viability, proliferation, colony formation, and cell cycle were assessed by in miR-149-3p mimic or mimic control. In silico analysis were used to predict miR-149-3p putative target genes. CDKN1A expression at the mRNA and protein levels was evaluated by qRT-PCR and western blot, respectively. Higher miR-149-3p expression was associated with unfavorable ACT outcomes. Compared to the mimic control, miR-149-3p overexpression increased cell viability and colony formation, and affected cell cycle progression. Also, we identified CDKN1A as a potential miR-149-3p target gene, with decreased expression at both the gene and protein levels in miR-149-3p mimic cells. Collectively, these findings suggest that miR-149-3p promotes H295A cell viability by downregulating CDKN1A and provide evidence that miR-149-3p may be useful as a novel therapeutic target for pediatric ACT.</p>","PeriodicalId":13228,"journal":{"name":"Human Cell","volume":"35 6","pages":"1952-1960"},"PeriodicalIF":4.3,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40343913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
RNF126 contributes to stem cell-like properties and metastasis in hepatocellular carcinoma through ubiquitination and degradation of LKB1. RNF126通过泛素化和LKB1降解参与肝细胞癌的干细胞样特性和转移。
IF 4.3 3区 生物学
Human Cell Pub Date : 2022-11-01 Epub Date: 2022-09-06 DOI: 10.1007/s13577-022-00782-6
Jie Huang, Yan Li, Mengyao Zheng, Haiyu He, Dingwei Xu, Daguang Tian
{"title":"RNF126 contributes to stem cell-like properties and metastasis in hepatocellular carcinoma through ubiquitination and degradation of LKB1.","authors":"Jie Huang,&nbsp;Yan Li,&nbsp;Mengyao Zheng,&nbsp;Haiyu He,&nbsp;Dingwei Xu,&nbsp;Daguang Tian","doi":"10.1007/s13577-022-00782-6","DOIUrl":"https://doi.org/10.1007/s13577-022-00782-6","url":null,"abstract":"<p><p>Hepatocellular carcinoma (HCC) is one of the malignant tumors with the worst prognosis, and tumor recurrence and metastasis are the main factors leading to poor prognosis of HCC patients. Accumulating studies show that RNF126, ring finger protein 126, is involved in the pathological process of many tumors. However, the biological function and exact molecular mechanism of RNF126 in HCC remain unclear. In this study, we investigated the role of RNF126 in the pathogenesis of HCC. By analyzing database and verifying with our clinical specimens, it was found that RNF126 was highly expressed in HCC tissues, which is associated with shorter overall survival and higher recurrence rate. Overexpressed RNF126 can significantly promote the proliferation, migration, invasion and angiogenesis of HCC cells, whereas knockdown RNF126 can reverse this effect. Mechanically, RNF126 down-regulates liver kinase B1 (LKB1) expression by ubiquitination of LKB1 to weaken its stability, thereby significantly promoting stem-cell-like activity, migration, and angiogenesis of HCC. Notably, consistent with in vitro results, RNF126 was stably transformed in Hep3B and subcutaneously injected into nude mice. In established mouse xenograft models, tumor growth can be effectively inhibited and the occurrence of lung metastasis is reduced. In HCC, RNF126 may down-regulate LKB1 through ubiquitination, thus becoming a powerful prognostic biomarker and a recognized tumor suppressor. Therefore, our study may provide a promising new therapeutic strategy for targeting RNF126 for HCC patients.</p>","PeriodicalId":13228,"journal":{"name":"Human Cell","volume":"35 6","pages":"1869-1884"},"PeriodicalIF":4.3,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40353551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Retraction Note: Downregulation of miR-96 suppresses the profibrogenic functions of cardiac fibroblasts induced by angiotensin II and attenuates atrial fibrosis by upregulating KLF13. 注:miR-96下调可抑制血管紧张素II诱导的心脏成纤维细胞的促纤维化功能,并通过上调KLF13减轻心房纤维化。
IF 4.3 3区 生物学
Human Cell Pub Date : 2022-11-01 DOI: 10.1007/s13577-022-00780-8
Lijie Su, Yili Yao, Wei Song
{"title":"Retraction Note: Downregulation of miR-96 suppresses the profibrogenic functions of cardiac fibroblasts induced by angiotensin II and attenuates atrial fibrosis by upregulating KLF13.","authors":"Lijie Su,&nbsp;Yili Yao,&nbsp;Wei Song","doi":"10.1007/s13577-022-00780-8","DOIUrl":"https://doi.org/10.1007/s13577-022-00780-8","url":null,"abstract":"","PeriodicalId":13228,"journal":{"name":"Human Cell","volume":"35 6","pages":"2029"},"PeriodicalIF":4.3,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40337340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Pyroptosis: a novel signature to predict prognosis and immunotherapy response in gliomas. 焦下垂:预测胶质瘤预后和免疫治疗反应的新特征。
IF 4.3 3区 生物学
Human Cell Pub Date : 2022-11-01 Epub Date: 2022-09-21 DOI: 10.1007/s13577-022-00791-5
Guiying He, Zhimin Chen, Shenghua Zhuo, Jingzhi Tang, Weijie Hao, Kun Yang, Chunshui Yang
{"title":"Pyroptosis: a novel signature to predict prognosis and immunotherapy response in gliomas.","authors":"Guiying He,&nbsp;Zhimin Chen,&nbsp;Shenghua Zhuo,&nbsp;Jingzhi Tang,&nbsp;Weijie Hao,&nbsp;Kun Yang,&nbsp;Chunshui Yang","doi":"10.1007/s13577-022-00791-5","DOIUrl":"https://doi.org/10.1007/s13577-022-00791-5","url":null,"abstract":"<p><p>Gliomas are the most common primary brain tumors and are highly malignant with a poor prognosis. Pyroptosis, an inflammatory form of programmed cell death, promotes the inflammatory cell death of cancer. Studies have demonstrated that pyroptosis can promote the inflammatory cell death (ICD) of cancer, thus affecting the prognosis of cancer patients. Therefore, genes that control pyroptosis could be a promising candidate bio-indicator in tumor therapy. The function of pyroptosis-related genes (PRGs) in gliomas was investigated based on the Chinese Glioma Genome Atlas (CGGA), the Cancer Genome Atlas (TCGA) and the Repository of Molecular Brain Neoplasia Data (Rembrandt) databases. In this study, using the non-negative matrix factorization (NMF) clustering method, 26 PRGs from the RNA sequencing data were divided into two subgroups. The LASSO and Cox regression was used to develop a 4-gene (BAX, Caspase-4, Caspase-8, PLCG1) risk signature, and all glioma patients in the CGGA, TCGA and Rembrandt cohorts were divided into low- and high-risk groups. The results demonstrate that the gene risk signature related to clinical features can be used as an independent prognostic indicator in glioma patients. Moreover, the high-risk subtype had rich immune infiltration and high expression of immune checkpoint genes in the tumor immune microenvironment (TIME). The analysis of the Submap algorithm shows that patients in the high-risk group could benefit more from anti-PD1 treatment. The risk characteristics associated with pyroptosis proposed in this study play an essential role in TIME and can potentially predict the prognosis and immunotherapeutic response of glioma patients.</p>","PeriodicalId":13228,"journal":{"name":"Human Cell","volume":"35 6","pages":"1976-1992"},"PeriodicalIF":4.3,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40371669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Retraction Note: Long non-coding RNA VPS9D1-AS1 promotes growth of colon adenocarcinoma by sponging miR-1301-3p and CLDN1. 注:长链非编码RNA VPS9D1-AS1通过海绵作用miR-1301-3p和CLDN1促进结肠腺癌生长。
IF 4.3 3区 生物学
Human Cell Pub Date : 2022-11-01 DOI: 10.1007/s13577-022-00784-4
Wei Liu
{"title":"Retraction Note: Long non-coding RNA VPS9D1-AS1 promotes growth of colon adenocarcinoma by sponging miR-1301-3p and CLDN1.","authors":"Wei Liu","doi":"10.1007/s13577-022-00784-4","DOIUrl":"https://doi.org/10.1007/s13577-022-00784-4","url":null,"abstract":"","PeriodicalId":13228,"journal":{"name":"Human Cell","volume":"35 6","pages":"2030"},"PeriodicalIF":4.3,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40343914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Odd-skipped related 1 plays a tumor suppressor role in ovarian cancer via promoting follistatin-like protein 1 transcription. odd -skip相关1通过促进卵泡抑素样蛋白1的转录在卵巢癌中发挥抑瘤作用。
IF 4.3 3区 生物学
Human Cell Pub Date : 2022-11-01 Epub Date: 2022-08-14 DOI: 10.1007/s13577-022-00767-5
Zhong Yu, Ling Ouyang
{"title":"Odd-skipped related 1 plays a tumor suppressor role in ovarian cancer via promoting follistatin-like protein 1 transcription.","authors":"Zhong Yu,&nbsp;Ling Ouyang","doi":"10.1007/s13577-022-00767-5","DOIUrl":"https://doi.org/10.1007/s13577-022-00767-5","url":null,"abstract":"<p><p>Zinc-finger transcription factor odd-skipped related 1 (OSR1) is involved in the progression of certain types of cancers, via regulating the transcription of downstream genes. However, the function of OSR1 in ovarian cancer (OC) progression remains unclear. The present study aimed to explore the OSR1 expression pattern in OC tissues and cell lines. Functional assays were performed to explore the regulatory effects of OSR1 on OC cell growth, migration and invasion in vitro and in vivo. Results of the present study demonstrated that OSR1 was significantly downregulated in OC tissues compared with healthy ovarian tissues (P < 0.01). Moreover, SKOV-3 and OVCAR-3 cells with low OSR1 expression were used for functional studies, and results demonstrated that OSR1 overexpression suppressed cell growth by inhibiting cell cycle progression and inducing cell apoptosis in vitro. OC cells with higher OSR1 expression levels exhibited reduced levels of migration and invasion, when compared with the corresponding control. In addition, OSR1 expression in xenografts models resulted in diminished tumor volume and suppressed tumorigenesis. OSR1 enhanced follistatin-like protein 1 (FSTL1) expression at the transcriptional level through directly binding to the promoter of FSTL1, which was commonly reported to exert a tumor suppressor role in OC progression. Moreover, FSTL1 knockdown reversed the action of OSR1 overexpression in OC progression, including cell viability, migration, invasion, and apoptosis. In conclusion, these results indicated that OSR1 may function as a tumor suppressor through augmenting FSTL1 transcription in OC progression, suggesting that the OSR1/ FSTL1 axis may exhibit potential as a therapeutic target for OC therapy.</p>","PeriodicalId":13228,"journal":{"name":"Human Cell","volume":"35 6","pages":"1824-1837"},"PeriodicalIF":4.3,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40411466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Long non-coding RNA RPL34-AS1 ameliorates oxygen-glucose deprivation-induced neuronal injury via modulating miR-223-3p/IGF1R axis. 长链非编码RNA RPL34-AS1通过调节miR-223-3p/IGF1R轴改善氧葡萄糖剥夺诱导的神经元损伤。
IF 4.3 3区 生物学
Human Cell Pub Date : 2022-11-01 Epub Date: 2022-08-25 DOI: 10.1007/s13577-022-00773-7
Xin-Ya Wei, Tian-Qi Zhang, Rui Suo, You-Yang Qu, Yan Chen, Yu-Lan Zhu
{"title":"Long non-coding RNA RPL34-AS1 ameliorates oxygen-glucose deprivation-induced neuronal injury via modulating miR-223-3p/IGF1R axis.","authors":"Xin-Ya Wei,&nbsp;Tian-Qi Zhang,&nbsp;Rui Suo,&nbsp;You-Yang Qu,&nbsp;Yan Chen,&nbsp;Yu-Lan Zhu","doi":"10.1007/s13577-022-00773-7","DOIUrl":"https://doi.org/10.1007/s13577-022-00773-7","url":null,"abstract":"<p><p>Ribosomal protein L34-antisense RNA 1 (RPL34-AS1), one of the long non-coding RNAs (lncRNAs), plays an important function in regulating diverse human malignant tumors. Nevertheless, the functions of RPL34-AS1 in ischemic stroke remain unclear. The present work focused on determining the candidate targets of RPL34-AS1 and its related mechanism in ischemic injury. The oxygen-glucose deprivation (OGD/R) in vitro cell model and middle cerebral artery occlusion (MCAO) in vivo rat model were utilized to simulate the pathological process of ischemic stroke. Additionally, the CCK8, WB (detecting Bcl-2 and Bax protein levels), and caspase-3 activity assays were done to investigate the anti-apoptotic functions of RPL34-AS1. The relationship among RPL34-AS1, insulin-like growth factor 1 receptor (IGF1R), and microRNA-223-3p (miR-223-3p) was determined through luciferase reporter assay. In this study, RPL34-AS1 expression was reduced in patients suffering from ischemic stroke. The overexpression of RPL34-AS1 reduced ischemic brain damage. However, the cell viability and glucose uptake were increased, and the apoptosis rate was decreased in the OGD/R-induced neurons. Further, miR-223-3p resulted in the decreased cell viability and glucose uptake and the increased cell apoptosis to cause ischemic brain damage. Besides, the neuroprotective effects of RPL34-AS1 on OGD/R injury were partly reversed by miR-223-3p. Mechanistically, lncRNA RPL34-AS1 could function as the competing endogenous RNA (ceRNA) of miR-223-3p to regulate IGF1R. Collectively, our study demonstrated that lncRNA RPL34-AS1 attenuated OGD/R-induced neuronal injury by mediating miR-223-3p/IGF1R axis. This discovery might serve as the candidate therapeutic target for ischemic stroke.</p>","PeriodicalId":13228,"journal":{"name":"Human Cell","volume":"35 6","pages":"1785-1796"},"PeriodicalIF":4.3,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40427075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Establishment and characterization of NCC-MRT1-C1: a novel cell line of malignant rhabdoid tumor. 恶性横纹肌样瘤新细胞系NCC-MRT1-C1的建立与表征。
IF 4.3 3区 生物学
Human Cell Pub Date : 2022-11-01 Epub Date: 2022-08-05 DOI: 10.1007/s13577-022-00751-z
Taro Akiyama, Yuki Yoshimatsu, Rei Noguchi, Yooksil Sin, Ryuto Tsuchiya, Takuya Ono, Chiaki Sato, Naoki Kojima, Akihiko Yoshida, Akira Kawai, Seji Ohtori, Tadashi Kondo
{"title":"Establishment and characterization of NCC-MRT1-C1: a novel cell line of malignant rhabdoid tumor.","authors":"Taro Akiyama,&nbsp;Yuki Yoshimatsu,&nbsp;Rei Noguchi,&nbsp;Yooksil Sin,&nbsp;Ryuto Tsuchiya,&nbsp;Takuya Ono,&nbsp;Chiaki Sato,&nbsp;Naoki Kojima,&nbsp;Akihiko Yoshida,&nbsp;Akira Kawai,&nbsp;Seji Ohtori,&nbsp;Tadashi Kondo","doi":"10.1007/s13577-022-00751-z","DOIUrl":"https://doi.org/10.1007/s13577-022-00751-z","url":null,"abstract":"<p><p>Malignant rhabdoid tumor (MRT) is a sarcoma histologically characterized by rhabdoid cells and genetically characterized by loss of function of the chromatin remodeling complex SWI/SNF induced by SMARCB1 gene deficiency. MRT mainly occurs in children, may arise in various locations, but is predominantly in the central nervous system (CNS) and kidney. Although MRT exhibits poor prognosis, standard treatment has not yet been established due to its extreme rarity. Patient-derived cancer cell lines are critical tools for basic and pre-clinical research in the development of chemotherapy. However, none of the MRT cell lines was derived from adult patients, and only one cell line was derived from the MRT of a soft tissue, despite the clinical behavior of MRT varying according to patient age and anatomic site. Herein, we reported the first cell line of MRT isolated from the soft tissue of an adult patient and named it NCC-MRT1-C1. NCC-MRT1-C1 cells showed a biallelic loss of the SMARCB1 gene. NCC-MRT1-C1 cells demonstrated rapid proliferation, spheroid formation, invasion capability in vitro, and tumorigenesis in nude mice. Screening of antitumor agents in NCC-MRT1-C1 cells resulted in the identification of six effective drugs. In conclusion, we report the first MRT cell line from the soft tissue of an adult patient. We believe that NCC-MRT1-C1 is a useful tool for developing novel chemotherapies for MRT.</p>","PeriodicalId":13228,"journal":{"name":"Human Cell","volume":"35 6","pages":"2002-2010"},"PeriodicalIF":4.3,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40694325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信