Human CellPub Date : 2022-11-01Epub Date: 2022-09-06DOI: 10.1007/s13577-022-00782-6
Jie Huang, Yan Li, Mengyao Zheng, Haiyu He, Dingwei Xu, Daguang Tian
{"title":"RNF126 contributes to stem cell-like properties and metastasis in hepatocellular carcinoma through ubiquitination and degradation of LKB1.","authors":"Jie Huang, Yan Li, Mengyao Zheng, Haiyu He, Dingwei Xu, Daguang Tian","doi":"10.1007/s13577-022-00782-6","DOIUrl":"https://doi.org/10.1007/s13577-022-00782-6","url":null,"abstract":"<p><p>Hepatocellular carcinoma (HCC) is one of the malignant tumors with the worst prognosis, and tumor recurrence and metastasis are the main factors leading to poor prognosis of HCC patients. Accumulating studies show that RNF126, ring finger protein 126, is involved in the pathological process of many tumors. However, the biological function and exact molecular mechanism of RNF126 in HCC remain unclear. In this study, we investigated the role of RNF126 in the pathogenesis of HCC. By analyzing database and verifying with our clinical specimens, it was found that RNF126 was highly expressed in HCC tissues, which is associated with shorter overall survival and higher recurrence rate. Overexpressed RNF126 can significantly promote the proliferation, migration, invasion and angiogenesis of HCC cells, whereas knockdown RNF126 can reverse this effect. Mechanically, RNF126 down-regulates liver kinase B1 (LKB1) expression by ubiquitination of LKB1 to weaken its stability, thereby significantly promoting stem-cell-like activity, migration, and angiogenesis of HCC. Notably, consistent with in vitro results, RNF126 was stably transformed in Hep3B and subcutaneously injected into nude mice. In established mouse xenograft models, tumor growth can be effectively inhibited and the occurrence of lung metastasis is reduced. In HCC, RNF126 may down-regulate LKB1 through ubiquitination, thus becoming a powerful prognostic biomarker and a recognized tumor suppressor. Therefore, our study may provide a promising new therapeutic strategy for targeting RNF126 for HCC patients.</p>","PeriodicalId":13228,"journal":{"name":"Human Cell","volume":"35 6","pages":"1869-1884"},"PeriodicalIF":4.3,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40353551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Human CellPub Date : 2022-11-01DOI: 10.1007/s13577-022-00780-8
Lijie Su, Yili Yao, Wei Song
{"title":"Retraction Note: Downregulation of miR-96 suppresses the profibrogenic functions of cardiac fibroblasts induced by angiotensin II and attenuates atrial fibrosis by upregulating KLF13.","authors":"Lijie Su, Yili Yao, Wei Song","doi":"10.1007/s13577-022-00780-8","DOIUrl":"https://doi.org/10.1007/s13577-022-00780-8","url":null,"abstract":"","PeriodicalId":13228,"journal":{"name":"Human Cell","volume":"35 6","pages":"2029"},"PeriodicalIF":4.3,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40337340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Human CellPub Date : 2022-11-01Epub Date: 2022-09-21DOI: 10.1007/s13577-022-00791-5
Guiying He, Zhimin Chen, Shenghua Zhuo, Jingzhi Tang, Weijie Hao, Kun Yang, Chunshui Yang
{"title":"Pyroptosis: a novel signature to predict prognosis and immunotherapy response in gliomas.","authors":"Guiying He, Zhimin Chen, Shenghua Zhuo, Jingzhi Tang, Weijie Hao, Kun Yang, Chunshui Yang","doi":"10.1007/s13577-022-00791-5","DOIUrl":"https://doi.org/10.1007/s13577-022-00791-5","url":null,"abstract":"<p><p>Gliomas are the most common primary brain tumors and are highly malignant with a poor prognosis. Pyroptosis, an inflammatory form of programmed cell death, promotes the inflammatory cell death of cancer. Studies have demonstrated that pyroptosis can promote the inflammatory cell death (ICD) of cancer, thus affecting the prognosis of cancer patients. Therefore, genes that control pyroptosis could be a promising candidate bio-indicator in tumor therapy. The function of pyroptosis-related genes (PRGs) in gliomas was investigated based on the Chinese Glioma Genome Atlas (CGGA), the Cancer Genome Atlas (TCGA) and the Repository of Molecular Brain Neoplasia Data (Rembrandt) databases. In this study, using the non-negative matrix factorization (NMF) clustering method, 26 PRGs from the RNA sequencing data were divided into two subgroups. The LASSO and Cox regression was used to develop a 4-gene (BAX, Caspase-4, Caspase-8, PLCG1) risk signature, and all glioma patients in the CGGA, TCGA and Rembrandt cohorts were divided into low- and high-risk groups. The results demonstrate that the gene risk signature related to clinical features can be used as an independent prognostic indicator in glioma patients. Moreover, the high-risk subtype had rich immune infiltration and high expression of immune checkpoint genes in the tumor immune microenvironment (TIME). The analysis of the Submap algorithm shows that patients in the high-risk group could benefit more from anti-PD1 treatment. The risk characteristics associated with pyroptosis proposed in this study play an essential role in TIME and can potentially predict the prognosis and immunotherapeutic response of glioma patients.</p>","PeriodicalId":13228,"journal":{"name":"Human Cell","volume":"35 6","pages":"1976-1992"},"PeriodicalIF":4.3,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40371669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Human CellPub Date : 2022-11-01DOI: 10.1007/s13577-022-00784-4
Wei Liu
{"title":"Retraction Note: Long non-coding RNA VPS9D1-AS1 promotes growth of colon adenocarcinoma by sponging miR-1301-3p and CLDN1.","authors":"Wei Liu","doi":"10.1007/s13577-022-00784-4","DOIUrl":"https://doi.org/10.1007/s13577-022-00784-4","url":null,"abstract":"","PeriodicalId":13228,"journal":{"name":"Human Cell","volume":"35 6","pages":"2030"},"PeriodicalIF":4.3,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40343914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Human CellPub Date : 2022-11-01Epub Date: 2022-08-14DOI: 10.1007/s13577-022-00767-5
Zhong Yu, Ling Ouyang
{"title":"Odd-skipped related 1 plays a tumor suppressor role in ovarian cancer via promoting follistatin-like protein 1 transcription.","authors":"Zhong Yu, Ling Ouyang","doi":"10.1007/s13577-022-00767-5","DOIUrl":"https://doi.org/10.1007/s13577-022-00767-5","url":null,"abstract":"<p><p>Zinc-finger transcription factor odd-skipped related 1 (OSR1) is involved in the progression of certain types of cancers, via regulating the transcription of downstream genes. However, the function of OSR1 in ovarian cancer (OC) progression remains unclear. The present study aimed to explore the OSR1 expression pattern in OC tissues and cell lines. Functional assays were performed to explore the regulatory effects of OSR1 on OC cell growth, migration and invasion in vitro and in vivo. Results of the present study demonstrated that OSR1 was significantly downregulated in OC tissues compared with healthy ovarian tissues (P < 0.01). Moreover, SKOV-3 and OVCAR-3 cells with low OSR1 expression were used for functional studies, and results demonstrated that OSR1 overexpression suppressed cell growth by inhibiting cell cycle progression and inducing cell apoptosis in vitro. OC cells with higher OSR1 expression levels exhibited reduced levels of migration and invasion, when compared with the corresponding control. In addition, OSR1 expression in xenografts models resulted in diminished tumor volume and suppressed tumorigenesis. OSR1 enhanced follistatin-like protein 1 (FSTL1) expression at the transcriptional level through directly binding to the promoter of FSTL1, which was commonly reported to exert a tumor suppressor role in OC progression. Moreover, FSTL1 knockdown reversed the action of OSR1 overexpression in OC progression, including cell viability, migration, invasion, and apoptosis. In conclusion, these results indicated that OSR1 may function as a tumor suppressor through augmenting FSTL1 transcription in OC progression, suggesting that the OSR1/ FSTL1 axis may exhibit potential as a therapeutic target for OC therapy.</p>","PeriodicalId":13228,"journal":{"name":"Human Cell","volume":"35 6","pages":"1824-1837"},"PeriodicalIF":4.3,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40411466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Long non-coding RNA RPL34-AS1 ameliorates oxygen-glucose deprivation-induced neuronal injury via modulating miR-223-3p/IGF1R axis.","authors":"Xin-Ya Wei, Tian-Qi Zhang, Rui Suo, You-Yang Qu, Yan Chen, Yu-Lan Zhu","doi":"10.1007/s13577-022-00773-7","DOIUrl":"https://doi.org/10.1007/s13577-022-00773-7","url":null,"abstract":"<p><p>Ribosomal protein L34-antisense RNA 1 (RPL34-AS1), one of the long non-coding RNAs (lncRNAs), plays an important function in regulating diverse human malignant tumors. Nevertheless, the functions of RPL34-AS1 in ischemic stroke remain unclear. The present work focused on determining the candidate targets of RPL34-AS1 and its related mechanism in ischemic injury. The oxygen-glucose deprivation (OGD/R) in vitro cell model and middle cerebral artery occlusion (MCAO) in vivo rat model were utilized to simulate the pathological process of ischemic stroke. Additionally, the CCK8, WB (detecting Bcl-2 and Bax protein levels), and caspase-3 activity assays were done to investigate the anti-apoptotic functions of RPL34-AS1. The relationship among RPL34-AS1, insulin-like growth factor 1 receptor (IGF1R), and microRNA-223-3p (miR-223-3p) was determined through luciferase reporter assay. In this study, RPL34-AS1 expression was reduced in patients suffering from ischemic stroke. The overexpression of RPL34-AS1 reduced ischemic brain damage. However, the cell viability and glucose uptake were increased, and the apoptosis rate was decreased in the OGD/R-induced neurons. Further, miR-223-3p resulted in the decreased cell viability and glucose uptake and the increased cell apoptosis to cause ischemic brain damage. Besides, the neuroprotective effects of RPL34-AS1 on OGD/R injury were partly reversed by miR-223-3p. Mechanistically, lncRNA RPL34-AS1 could function as the competing endogenous RNA (ceRNA) of miR-223-3p to regulate IGF1R. Collectively, our study demonstrated that lncRNA RPL34-AS1 attenuated OGD/R-induced neuronal injury by mediating miR-223-3p/IGF1R axis. This discovery might serve as the candidate therapeutic target for ischemic stroke.</p>","PeriodicalId":13228,"journal":{"name":"Human Cell","volume":"35 6","pages":"1785-1796"},"PeriodicalIF":4.3,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40427075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Establishment and characterization of NCC-MRT1-C1: a novel cell line of malignant rhabdoid tumor.","authors":"Taro Akiyama, Yuki Yoshimatsu, Rei Noguchi, Yooksil Sin, Ryuto Tsuchiya, Takuya Ono, Chiaki Sato, Naoki Kojima, Akihiko Yoshida, Akira Kawai, Seji Ohtori, Tadashi Kondo","doi":"10.1007/s13577-022-00751-z","DOIUrl":"https://doi.org/10.1007/s13577-022-00751-z","url":null,"abstract":"<p><p>Malignant rhabdoid tumor (MRT) is a sarcoma histologically characterized by rhabdoid cells and genetically characterized by loss of function of the chromatin remodeling complex SWI/SNF induced by SMARCB1 gene deficiency. MRT mainly occurs in children, may arise in various locations, but is predominantly in the central nervous system (CNS) and kidney. Although MRT exhibits poor prognosis, standard treatment has not yet been established due to its extreme rarity. Patient-derived cancer cell lines are critical tools for basic and pre-clinical research in the development of chemotherapy. However, none of the MRT cell lines was derived from adult patients, and only one cell line was derived from the MRT of a soft tissue, despite the clinical behavior of MRT varying according to patient age and anatomic site. Herein, we reported the first cell line of MRT isolated from the soft tissue of an adult patient and named it NCC-MRT1-C1. NCC-MRT1-C1 cells showed a biallelic loss of the SMARCB1 gene. NCC-MRT1-C1 cells demonstrated rapid proliferation, spheroid formation, invasion capability in vitro, and tumorigenesis in nude mice. Screening of antitumor agents in NCC-MRT1-C1 cells resulted in the identification of six effective drugs. In conclusion, we report the first MRT cell line from the soft tissue of an adult patient. We believe that NCC-MRT1-C1 is a useful tool for developing novel chemotherapies for MRT.</p>","PeriodicalId":13228,"journal":{"name":"Human Cell","volume":"35 6","pages":"2002-2010"},"PeriodicalIF":4.3,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40694325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Human CellPub Date : 2022-11-01Epub Date: 2022-09-14DOI: 10.1007/s13577-022-00775-5
Borong Zhou, Zhongchao Mai, Ying Ye, Yanan Song, Miao Zhang, Xinlin Yang, Wei Xia, Xiaofeng Qiu
{"title":"The role of PYCR1 in inhibiting 5-fluorouracil-induced ferroptosis and apoptosis through SLC25A10 in colorectal cancer.","authors":"Borong Zhou, Zhongchao Mai, Ying Ye, Yanan Song, Miao Zhang, Xinlin Yang, Wei Xia, Xiaofeng Qiu","doi":"10.1007/s13577-022-00775-5","DOIUrl":"10.1007/s13577-022-00775-5","url":null,"abstract":"<p><p>Although PYCR1 is a well-recognized oncogenic gene for malignant tumors, the causal relationship of its expression with malignant growth and cytotoxic chemotherapeutics remains unclear. Therefore, this study aimed to clarify the role of PYCR1 and its interaction with SLC25A10 in a chemotherapeutic agent 5-fluorouracil (5-FU)'s toxicity to colorectal cancer cells. PYCR1 and SLC25A10 expressions were detected in The Cancer Genome Atlas database and colon adenocarcinoma (COAD) clinical samples. PYCR1 upregulation was associated with SLC25A10 expression and poor prognosis, and its high expression indicated decreased survival rates in patients with COAD. PYCR1 overexpression inhibited lipid reactive oxygen species production and promoted SLC25A10 expression in colorectal cancer cells. PYCR1 silencing enhanced the antitumor effects of 5-FU. Ferroptosis inhibitor deferoxamine suppressed the antitumor effects of PYCR1 silencing, whereas ferroptosis inducer erastin inhibited the protumor effects of PYCR1 overexpression. SLC25A10 overexpression reversed the antitumor effects of PYCR1 silencing in vitro and inhibited the antitumor effects of erastin in vivo. Therefore, PYCR1 is an oncogenic gene that promotes colorectal tumor growth and desensitizes colorectal cancer cells to 5-FU cytotoxicity by preventing apoptosis and ferroptosis.</p>","PeriodicalId":13228,"journal":{"name":"Human Cell","volume":"35 6","pages":"1900-1911"},"PeriodicalIF":4.3,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40357103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Human CellPub Date : 2022-09-01Epub Date: 2022-07-07DOI: 10.1007/s13577-022-00739-9
Jin Song, Xiaolong Xu, Shasha He, Ning Wang, Yunjing Bai, Bo Li, Shengsheng Zhang
{"title":"Exosomal hsa_circ_0017252 attenuates the development of gastric cancer via inhibiting macrophage M2 polarization.","authors":"Jin Song, Xiaolong Xu, Shasha He, Ning Wang, Yunjing Bai, Bo Li, Shengsheng Zhang","doi":"10.1007/s13577-022-00739-9","DOIUrl":"https://doi.org/10.1007/s13577-022-00739-9","url":null,"abstract":"<p><p>Gastric cancer (GC) is an aggressive malignant tumor of the digestive system, with high morbidity rates. We previously demonstrated that miR-17-5p can modify tumorigenesis in GC. In addition, other studies have shown that circRNAs can regulate GC progression by sponging various miRNAs. However, the association between circRNAs and miR-17-5p in GC has not yet been explored. Hence, this study aimed to explore the possible interactions between various circRNAs and miR-17-5p using a dual-luciferase assay. CCK-8 was used to determine cell viability, and a Transwell assay was used to measure cell invasion and migration. Gene expression was assessed using quantitative reverse transcription PCR (RT-qPCR), and exosomes were identified using transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA). Annexin V/PI staining was also used to detect cell apoptosis. These investigations collectively revealed that miR-17-5p is a target of the circRNA hsa_circ_0017252 and hsa_circ_0017252 is significantly downregulated in GC tissues. In addition, the overexpression of hsa_circ_0017252 inhibited GC cell migration by sponging of miR-17-5p, and GC cell-secreted exosomal hsa_circ_0017252 effectively inhibited macrophage M2-like polarization, which in turn suppressed GC cell invasion. Notably, exosomes containing hsa_circ_0017252 also suppressed GC tumor growth in vivo. Thus, our data suggest that the overexpression of hsa_circ_0017252 suppresses GC malignancy by sponging miR-17-5p. In addition, exosomal hsa_circ_0017252 excreted from GC cells attenuated GC progression by suppressing macrophage M2-like polarization. These findings improve our basic understanding of GC and open a novel avenue for developing more effective GC treatments.</p>","PeriodicalId":13228,"journal":{"name":"Human Cell","volume":"35 5","pages":"1499-1511"},"PeriodicalIF":4.3,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40478089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Human CellPub Date : 2022-09-01Epub Date: 2022-07-06DOI: 10.1007/s13577-022-00744-y
Sophie Rae, Cathy Spillane, Gordon Blackshields, Stephen F Madden, Joanne Keenan, Britta Stordal
{"title":"The EMT-activator ZEB1 is unrelated to platinum drug resistance in ovarian cancer but is predictive of survival.","authors":"Sophie Rae, Cathy Spillane, Gordon Blackshields, Stephen F Madden, Joanne Keenan, Britta Stordal","doi":"10.1007/s13577-022-00744-y","DOIUrl":"https://doi.org/10.1007/s13577-022-00744-y","url":null,"abstract":"<p><p>The IGROVCDDP cisplatin-resistant ovarian cancer cell line is an unusual model, as it is also cross-resistant to paclitaxel. IGROVCDDP, therefore, models the resistance phenotype of serous ovarian cancer patients who have failed frontline platinum/taxane chemotherapy. IGROVCDDP has also undergone epithelial-mesenchymal transition (EMT). We aim to determine if alterations in EMT-related genes are related to or independent from the drug-resistance phenotypes. EMT gene and protein markers, invasion, motility and morphology were investigated in IGROVCDDP and its parent drug-sensitive cell line IGROV-1. ZEB1 was investigated by qPCR, Western blotting and siRNA knockdown. ZEB1 was also investigated in publicly available ovarian cancer gene-expression datasets. IGROVCDDP cells have decreased protein levels of epithelial marker E-cadherin (6.18-fold, p = 1.58e-04) and higher levels of mesenchymal markers vimentin (2.47-fold, p = 4.43e-03), N-cadherin (4.35-fold, p = 4.76e-03) and ZEB1 (3.43-fold, p = 0.04). IGROVCDDP have a spindle-like morphology consistent with EMT. Knockdown of ZEB1 in IGROVCDDP does not lead to cisplatin sensitivity but shows a reversal of EMT-gene signalling and an increase in cell circularity. High ZEB1 gene expression (HR = 1.31, n = 2051, p = 1.31e-05) is a marker of poor overall survival in high-grade serous ovarian-cancer patients. In contrast, ZEB1 is not predictive of overall survival in high-grade serous ovarian-cancer patients known to be treated with platinum chemotherapy. The increased expression of ZEB1 in IGROVCDDP appears to be independent of the drug-resistance phenotypes. ZEB1 has the potential to be used as biomarker of overall prognosis in ovarian-cancer patients but not of platinum/taxane chemoresistance.</p>","PeriodicalId":13228,"journal":{"name":"Human Cell","volume":"35 5","pages":"1547-1559"},"PeriodicalIF":4.3,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9374625/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40565138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}