RNF126 contributes to stem cell-like properties and metastasis in hepatocellular carcinoma through ubiquitination and degradation of LKB1.

IF 4.3 3区 生物学
Human Cell Pub Date : 2022-11-01 Epub Date: 2022-09-06 DOI:10.1007/s13577-022-00782-6
Jie Huang, Yan Li, Mengyao Zheng, Haiyu He, Dingwei Xu, Daguang Tian
{"title":"RNF126 contributes to stem cell-like properties and metastasis in hepatocellular carcinoma through ubiquitination and degradation of LKB1.","authors":"Jie Huang,&nbsp;Yan Li,&nbsp;Mengyao Zheng,&nbsp;Haiyu He,&nbsp;Dingwei Xu,&nbsp;Daguang Tian","doi":"10.1007/s13577-022-00782-6","DOIUrl":null,"url":null,"abstract":"<p><p>Hepatocellular carcinoma (HCC) is one of the malignant tumors with the worst prognosis, and tumor recurrence and metastasis are the main factors leading to poor prognosis of HCC patients. Accumulating studies show that RNF126, ring finger protein 126, is involved in the pathological process of many tumors. However, the biological function and exact molecular mechanism of RNF126 in HCC remain unclear. In this study, we investigated the role of RNF126 in the pathogenesis of HCC. By analyzing database and verifying with our clinical specimens, it was found that RNF126 was highly expressed in HCC tissues, which is associated with shorter overall survival and higher recurrence rate. Overexpressed RNF126 can significantly promote the proliferation, migration, invasion and angiogenesis of HCC cells, whereas knockdown RNF126 can reverse this effect. Mechanically, RNF126 down-regulates liver kinase B1 (LKB1) expression by ubiquitination of LKB1 to weaken its stability, thereby significantly promoting stem-cell-like activity, migration, and angiogenesis of HCC. Notably, consistent with in vitro results, RNF126 was stably transformed in Hep3B and subcutaneously injected into nude mice. In established mouse xenograft models, tumor growth can be effectively inhibited and the occurrence of lung metastasis is reduced. In HCC, RNF126 may down-regulate LKB1 through ubiquitination, thus becoming a powerful prognostic biomarker and a recognized tumor suppressor. Therefore, our study may provide a promising new therapeutic strategy for targeting RNF126 for HCC patients.</p>","PeriodicalId":13228,"journal":{"name":"Human Cell","volume":"35 6","pages":"1869-1884"},"PeriodicalIF":4.3000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13577-022-00782-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/9/6 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Hepatocellular carcinoma (HCC) is one of the malignant tumors with the worst prognosis, and tumor recurrence and metastasis are the main factors leading to poor prognosis of HCC patients. Accumulating studies show that RNF126, ring finger protein 126, is involved in the pathological process of many tumors. However, the biological function and exact molecular mechanism of RNF126 in HCC remain unclear. In this study, we investigated the role of RNF126 in the pathogenesis of HCC. By analyzing database and verifying with our clinical specimens, it was found that RNF126 was highly expressed in HCC tissues, which is associated with shorter overall survival and higher recurrence rate. Overexpressed RNF126 can significantly promote the proliferation, migration, invasion and angiogenesis of HCC cells, whereas knockdown RNF126 can reverse this effect. Mechanically, RNF126 down-regulates liver kinase B1 (LKB1) expression by ubiquitination of LKB1 to weaken its stability, thereby significantly promoting stem-cell-like activity, migration, and angiogenesis of HCC. Notably, consistent with in vitro results, RNF126 was stably transformed in Hep3B and subcutaneously injected into nude mice. In established mouse xenograft models, tumor growth can be effectively inhibited and the occurrence of lung metastasis is reduced. In HCC, RNF126 may down-regulate LKB1 through ubiquitination, thus becoming a powerful prognostic biomarker and a recognized tumor suppressor. Therefore, our study may provide a promising new therapeutic strategy for targeting RNF126 for HCC patients.

RNF126通过泛素化和LKB1降解参与肝细胞癌的干细胞样特性和转移。
肝细胞癌(HCC)是预后最差的恶性肿瘤之一,肿瘤复发和转移是导致HCC患者预后不良的主要因素。越来越多的研究表明,RNF126(无名指蛋白126)参与了许多肿瘤的病理过程。然而,RNF126在HCC中的生物学功能和确切的分子机制尚不清楚。在本研究中,我们研究了RNF126在HCC发病机制中的作用。通过数据库分析和临床标本验证,发现RNF126在HCC组织中高表达,总生存期较短,复发率较高。过表达RNF126可显著促进HCC细胞的增殖、迁移、侵袭和血管生成,而下调RNF126可逆转这一作用。机制上,RNF126通过使LKB1泛素化,下调LKB1的表达,削弱其稳定性,从而显著促进肝细胞癌的干细胞样活性、迁移和血管生成。值得注意的是,与体外结果一致,RNF126在Hep3B中稳定转化,并皮下注射到裸鼠体内。在已建立的小鼠异种移植瘤模型中,可以有效抑制肿瘤生长,减少肺转移的发生。在HCC中,RNF126可能通过泛素化下调LKB1,从而成为一种强大的预后生物标志物和公认的肿瘤抑制因子。因此,我们的研究可能为靶向RNF126治疗HCC患者提供一种有希望的新治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Human Cell
Human Cell 生物-细胞生物学
CiteScore
6.60
自引率
2.30%
发文量
176
期刊介绍: Human Cell is the official English-language journal of the Japan Human Cell Society. The journal serves as a forum for international research on all aspects of the human cell, encompassing not only cell biology but also pathology, cytology, and oncology, including clinical oncology. Embryonic stem cells derived from animals, regenerative medicine using animal cells, and experimental animal models with implications for human diseases are covered as well. Submissions in any of the following categories will be considered: Research Articles, Cell Lines, Rapid Communications, Reviews, and Letters to the Editor. A brief clinical case report focusing on cellular responses to pathological insults in human studies may also be submitted as a Letter to the Editor in a concise and short format. Not only basic scientists but also gynecologists, oncologists, and other clinical scientists are welcome to submit work expressing new ideas or research using human cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信