IEEE Transactions on Image Processing最新文献

筛选
英文 中文
Recalling Unknowns without Losing Precision: An Effective Solution to Large Model-Guided Open World Object Detection 在不损失精确度的情况下恢复未知数据:大型模型引导的开放世界物体检测的有效解决方案
IF 10.6 1区 计算机科学
IEEE Transactions on Image Processing Pub Date : 2024-09-18 DOI: 10.1109/tip.2024.3459589
Yulin He, Wei Chen, Siqi Wang, Tianrui Liu, Meng Wang
{"title":"Recalling Unknowns without Losing Precision: An Effective Solution to Large Model-Guided Open World Object Detection","authors":"Yulin He, Wei Chen, Siqi Wang, Tianrui Liu, Meng Wang","doi":"10.1109/tip.2024.3459589","DOIUrl":"https://doi.org/10.1109/tip.2024.3459589","url":null,"abstract":"","PeriodicalId":13217,"journal":{"name":"IEEE Transactions on Image Processing","volume":"4 1","pages":""},"PeriodicalIF":10.6,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142245415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
HeightFormer: Explicit Height Modeling without Extra Data for Camera-only 3D Object Detection in Bird’s Eye View HeightFormer:明确的高度建模,无需额外数据,实现鸟瞰图中仅摄像头的 3D 物体检测
IF 10.6 1区 计算机科学
IEEE Transactions on Image Processing Pub Date : 2024-09-09 DOI: 10.1109/tip.2024.3427701
Yiming Wu, Ruixiang Li, Zequn Qin, Xinhai Zhao, Xi Li
{"title":"HeightFormer: Explicit Height Modeling without Extra Data for Camera-only 3D Object Detection in Bird’s Eye View","authors":"Yiming Wu, Ruixiang Li, Zequn Qin, Xinhai Zhao, Xi Li","doi":"10.1109/tip.2024.3427701","DOIUrl":"https://doi.org/10.1109/tip.2024.3427701","url":null,"abstract":"","PeriodicalId":13217,"journal":{"name":"IEEE Transactions on Image Processing","volume":"63 1","pages":""},"PeriodicalIF":10.6,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142160432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nonconvex Robust High-Order Tensor Completion Using Randomized Low-Rank Approximation 使用随机低库近似的非凸稳健高阶张量补全
IF 10.6 1区 计算机科学
IEEE Transactions on Image Processing Pub Date : 2024-04-10 DOI: 10.1109/tip.2024.3385284
Wenjin Qin, Hailin Wang, Feng Zhang, Weijun Ma, Jianjun Wang, Tingwen Huang
{"title":"Nonconvex Robust High-Order Tensor Completion Using Randomized Low-Rank Approximation","authors":"Wenjin Qin, Hailin Wang, Feng Zhang, Weijun Ma, Jianjun Wang, Tingwen Huang","doi":"10.1109/tip.2024.3385284","DOIUrl":"https://doi.org/10.1109/tip.2024.3385284","url":null,"abstract":"","PeriodicalId":13217,"journal":{"name":"IEEE Transactions on Image Processing","volume":"22 1","pages":""},"PeriodicalIF":10.6,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140544990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Relationship-Incremental Scene Graph Generation by a Divide-and-Conquer Pipeline with Feature Adapter 通过带有特征适配器的分而治之流水线生成关系递增场景图
IF 10.6 1区 计算机科学
IEEE Transactions on Image Processing Pub Date : 2024-04-08 DOI: 10.1109/tip.2024.3384096
Xuewei Li, Guangcong Zheng, Yunlong Yu, Naye Ji, Xi Li
{"title":"Relationship-Incremental Scene Graph Generation by a Divide-and-Conquer Pipeline with Feature Adapter","authors":"Xuewei Li, Guangcong Zheng, Yunlong Yu, Naye Ji, Xi Li","doi":"10.1109/tip.2024.3384096","DOIUrl":"https://doi.org/10.1109/tip.2024.3384096","url":null,"abstract":"","PeriodicalId":13217,"journal":{"name":"IEEE Transactions on Image Processing","volume":"16 1","pages":""},"PeriodicalIF":10.6,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140538492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Towards Transparent Deep Image Aesthetics Assessment with Tag-based Content Descriptors. 利用基于标签的内容描述符实现透明的深度图像美学评估
IF 10.6 1区 计算机科学
IEEE Transactions on Image Processing Pub Date : 2023-08-30 DOI: 10.1109/TIP.2023.3308852
Jingwen Hou, Weisi Lin, Yuming Fang, Haoning Wu, Chaofeng Chen, Liang Liao, Weide Liu
{"title":"Towards Transparent Deep Image Aesthetics Assessment with Tag-based Content Descriptors.","authors":"Jingwen Hou, Weisi Lin, Yuming Fang, Haoning Wu, Chaofeng Chen, Liang Liao, Weide Liu","doi":"10.1109/TIP.2023.3308852","DOIUrl":"10.1109/TIP.2023.3308852","url":null,"abstract":"<p><p>Deep learning approaches for Image Aesthetics Assessment (IAA) have shown promising results in recent years, but the internal mechanisms of these models remain unclear. Previous studies have demonstrated that image aesthetics can be predicted using semantic features, such as pre-trained object classification features. However, these semantic features are learned implicitly, and therefore, previous works have not elucidated what the semantic features are representing. In this work, we aim to create a more transparent deep learning framework for IAA by introducing explainable semantic features. To achieve this, we propose Tag-based Content Descriptors (TCDs), where each value in a TCD describes the relevance of an image to a human-readable tag that refers to a specific type of image content. This allows us to build IAA models from explicit descriptions of image contents. We first propose the explicit matching process to produce TCDs that adopt predefined tags to describe image contents. We show that a simple MLP-based IAA model with TCDs only based on predefined tags can achieve an SRCC of 0.767, which is comparable to most state-of-the-art methods. However, predefined tags may not be sufficient to describe all possible image contents that the model may encounter. Therefore, we further propose the implicit matching process to describe image contents that cannot be described by predefined tags. By integrating components obtained from the implicit matching process into TCDs, the IAA model further achieves an SRCC of 0.817, which significantly outperforms existing IAA methods. Both the explicit matching process and the implicit matching process are realized by the proposed TCD generator. To evaluate the performance of the proposed TCD generator in matching images with predefined tags, we also labeled 5101 images with photography-related tags to form a validation set. And experimental results show that the proposed TCD generator can meaningfully assign photography-related tags to images.</p>","PeriodicalId":13217,"journal":{"name":"IEEE Transactions on Image Processing","volume":"PP ","pages":""},"PeriodicalIF":10.6,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10207498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Field-of-View IoU for Object Detection in 360° Images. 用于 360° 图像中物体检测的视场 IoU。
IF 10.6 1区 计算机科学
IEEE Transactions on Image Processing Pub Date : 2023-07-21 DOI: 10.1109/TIP.2023.3296013
Miao Cao, Satoshi Ikehata, Kiyoharu Aizawa
{"title":"Field-of-View IoU for Object Detection in 360° Images.","authors":"Miao Cao, Satoshi Ikehata, Kiyoharu Aizawa","doi":"10.1109/TIP.2023.3296013","DOIUrl":"10.1109/TIP.2023.3296013","url":null,"abstract":"<p><p>360° cameras have gained popularity over the last few years. In this paper, we propose two fundamental techniques-Field-of-View IoU (FoV-IoU) and 360Augmentation for object detection in 360° images. Although most object detection neural networks designed for perspective images are applicable to 360° images in equirectangular projection (ERP) format, their performance deteriorates owing to the distortion in ERP images. Our method can be readily integrated with existing perspective object detectors and significantly improves the performance. The FoV-IoU computes the intersection-over-union of two Field-of-View bounding boxes in a spherical image which could be used for training, inference, and evaluation while 360Augmentation is a data augmentation technique specific to 360° object detection task which randomly rotates a spherical image and solves the bias due to the sphere-to-plane projection. We conduct extensive experiments on the 360° indoor dataset with different types of perspective object detectors and show the consistent effectiveness of our method.</p>","PeriodicalId":13217,"journal":{"name":"IEEE Transactions on Image Processing","volume":"PP ","pages":""},"PeriodicalIF":10.6,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9848778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TGFuse: An Infrared and Visible Image Fusion Approach Based on Transformer and Generative Adversarial Network. TGFuse:基于变换器和生成对抗网络的红外与可见光图像融合方法。
IF 10.6 1区 计算机科学
IEEE Transactions on Image Processing Pub Date : 2023-05-10 DOI: 10.1109/TIP.2023.3273451
Dongyu Rao, Tianyang Xu, Xiao-Jun Wu
{"title":"TGFuse: An Infrared and Visible Image Fusion Approach Based on Transformer and Generative Adversarial Network.","authors":"Dongyu Rao, Tianyang Xu, Xiao-Jun Wu","doi":"10.1109/TIP.2023.3273451","DOIUrl":"10.1109/TIP.2023.3273451","url":null,"abstract":"<p><p>The end-to-end image fusion framework has achieved promising performance, with dedicated convolutional networks aggregating the multi-modal local appearance. However, long-range dependencies are directly neglected in existing CNN fusion approaches, impeding balancing the entire image-level perception for complex scenario fusion. In this paper, therefore, we propose an infrared and visible image fusion algorithm based on the transformer module and adversarial learning. Inspired by the global interaction power, we use the transformer technique to learn the effective global fusion relations. In particular, shallow features extracted by CNN are interacted in the proposed transformer fusion module to refine the fusion relationship within the spatial scope and across channels simultaneously. Besides, adversarial learning is designed in the training process to improve the output discrimination via imposing competitive consistency from the inputs, reflecting the specific characteristics in infrared and visible images. The experimental performance demonstrates the effectiveness of the proposed modules, with superior improvement against the state-of-the-art, generalising a novel paradigm via transformer and adversarial learning in the fusion task.</p>","PeriodicalId":13217,"journal":{"name":"IEEE Transactions on Image Processing","volume":"PP ","pages":""},"PeriodicalIF":10.6,"publicationDate":"2023-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9443051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
USOD10K: A New Benchmark Dataset for Underwater Salient Object Detection. USOD10K:水下突出物体检测的新基准数据集。
IF 10.6 1区 计算机科学
IEEE Transactions on Image Processing Pub Date : 2023-04-14 DOI: 10.1109/TIP.2023.3266163
Lin Hong, Xin Wang, Gan Zhang, Ming Zhao
{"title":"USOD10K: A New Benchmark Dataset for Underwater Salient Object Detection.","authors":"Lin Hong, Xin Wang, Gan Zhang, Ming Zhao","doi":"10.1109/TIP.2023.3266163","DOIUrl":"10.1109/TIP.2023.3266163","url":null,"abstract":"<p><p>Underwater salient object detection (USOD) attracts increasing interest for its promising performance in various underwater visual tasks. However, USOD research is still in its early stages due to the lack of large-scale datasets within which salient objects are well-defined and pixel-wise annotated. To address this issue, this paper introduces a new dataset named USOD10K. It consists of 10,255 underwater images, covering 70 categories of salient objects in 12 different underwater scenes. In addition, salient object boundaries and depth maps of all images are provided in this dataset. The USOD10K is the first large-scale dataset in the USOD community, making a significant leap in diversity, complexity, and scalability. Secondly, a simple but strong baseline termed TC-USOD is designed for the USOD10K. The TC-USOD adopts a hybrid architecture based on an encoder-decoder design that leverages transformer and convolution as the basic computational building block of the encoder and decoder, respectively. Thirdly, we make a comprehensive summarization of 35 cutting-edge SOD/USOD methods and benchmark them over the existing USOD dataset and the USOD10K. The results show that our TC-USOD obtained superior performance on all datasets tested. Finally, several other use cases of the USOD10K are discussed, and future directions of USOD research are pointed out. This work will promote the development of the USOD research and facilitate further research on underwater visual tasks and visually-guided underwater robots. To pave the road in this research field, all the dataset, code, and benchmark results are publicly available: https://github.com/LinHong-HIT/USOD10K.</p>","PeriodicalId":13217,"journal":{"name":"IEEE Transactions on Image Processing","volume":"PP ","pages":""},"PeriodicalIF":10.6,"publicationDate":"2023-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9781338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DVMark: A Deep Multiscale Framework for Video Watermarking. DVMark:用于视频水印的深度多尺度框架。
IF 10.6 1区 计算机科学
IEEE Transactions on Image Processing Pub Date : 2023-03-28 DOI: 10.1109/TIP.2023.3251737
Xiyang Luo, Yinxiao Li, Huiwen Chang, Ce Liu, Peyman Milanfar, Feng Yang
{"title":"DVMark: A Deep Multiscale Framework for Video Watermarking.","authors":"Xiyang Luo, Yinxiao Li, Huiwen Chang, Ce Liu, Peyman Milanfar, Feng Yang","doi":"10.1109/TIP.2023.3251737","DOIUrl":"10.1109/TIP.2023.3251737","url":null,"abstract":"<p><p>Video watermarking embeds a message into a cover video in an imperceptible manner, which can be retrieved even if the video undergoes certain modifications or distortions. Traditional watermarking methods are often manually designed for particular types of distortions and thus cannot simultaneously handle a broad spectrum of distortions. To this end, we propose a robust deep learning-based solution for video watermarking that is end-to-end trainable. Our model consists of a novel multiscale design where the watermarks are distributed across multiple spatial-temporal scales. Extensive evaluations on a wide variety of distortions show that our method outperforms traditional video watermarking methods as well as deep image watermarking models by a large margin. We further demonstrate the practicality of our method on a realistic video-editing application.</p>","PeriodicalId":13217,"journal":{"name":"IEEE Transactions on Image Processing","volume":"PP ","pages":""},"PeriodicalIF":10.6,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9266354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rain Removal From Light Field Images With 4D Convolution and Multi-Scale Gaussian Process 基于4D卷积和多尺度高斯过程的光场图像去雨
IF 10.6 1区 计算机科学
IEEE Transactions on Image Processing Pub Date : 2022-08-16 DOI: 10.1109/TAP.2022.3218759
Zhiqiang Yuan, Jianhua Zhang, Yilin Ji, G. Pedersen, W. Fan
{"title":"Rain Removal From Light Field Images With 4D Convolution and Multi-Scale Gaussian Process","authors":"Zhiqiang Yuan, Jianhua Zhang, Yilin Ji, G. Pedersen, W. Fan","doi":"10.1109/TAP.2022.3218759","DOIUrl":"https://doi.org/10.1109/TAP.2022.3218759","url":null,"abstract":"Existing deraining methods focus mainly on a single input image. However, with just a single input image, it is extremely difficult to accurately detect and remove rain streaks, in order to restore a rain-free image. In contrast, a light field image (LFI) embeds abundant 3D structure and texture information of the target scene by recording the direction and position of each incident ray via a plenoptic camera. LFIs are becoming popular in the computer vision and graphics communities. However, making full use of the abundant information available from LFIs, such as 2D array of sub-views and the disparity map of each sub-view, for effective rain removal is still a challenging problem. In this paper, we propose a novel method, 4D-MGP-SRRNet, for rain streak removal from LFIs. Our method takes as input all sub-views of a rainy LFI. To make full use of the LFI, it adopts 4D convolutional layers to simultaneously process all sub-views of the LFI. In the pipeline, the rain detection network, MGPDNet, with a novel Multi-scale Self-guided Gaussian Process (MSGP) module is proposed to detect high-resolution rain streaks from all sub-views of the input LFI at multi-scales. Semi-supervised learning is introduced for MSGP to accurately detect rain streaks by training on both virtual-world rainy LFIs and real-world rainy LFIs at multi-scales via computing pseudo ground truths for real-world rain streaks. We then feed all sub-views subtracting the predicted rain streaks into a 4D convolution-based Depth Estimation Residual Network (DERNet) to estimate the depth maps, which are later converted into fog maps. Finally, all sub-views concatenated with the corresponding rain streaks and fog maps are fed into a powerful rainy LFI restoring model based on the adversarial recurrent neural network to progressively eliminate rain streaks and recover the rain-free LFI. Extensive quantitative and qualitative evaluations conducted on both synthetic LFIs and real-world LFIs demonstrate the effectiveness of our proposed method.","PeriodicalId":13217,"journal":{"name":"IEEE Transactions on Image Processing","volume":"32 1","pages":"921-936"},"PeriodicalIF":10.6,"publicationDate":"2022-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48830864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信