IEEE Transactions on Image Processing最新文献

筛选
英文 中文
BGPSeg: Boundary-Guided Primitive Instance Segmentation of Point Clouds
IF 10.6 1区 计算机科学
IEEE Transactions on Image Processing Pub Date : 2025-02-19 DOI: 10.1109/tip.2025.3540586
Zheng Fang, Chuanqing Zhuang, Zhengda Lu, Yiqun Wang, Lupeng Liu, Jun Xiao
{"title":"BGPSeg: Boundary-Guided Primitive Instance Segmentation of Point Clouds","authors":"Zheng Fang, Chuanqing Zhuang, Zhengda Lu, Yiqun Wang, Lupeng Liu, Jun Xiao","doi":"10.1109/tip.2025.3540586","DOIUrl":"https://doi.org/10.1109/tip.2025.3540586","url":null,"abstract":"","PeriodicalId":13217,"journal":{"name":"IEEE Transactions on Image Processing","volume":"20 1","pages":""},"PeriodicalIF":10.6,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143451413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hybrid DQN-based Low-Computational Reinforcement Learning Object Detection with Adaptive Dynamic Reward Function and ROI Align-based Bounding Box Regression
IF 10.6 1区 计算机科学
IEEE Transactions on Image Processing Pub Date : 2025-02-19 DOI: 10.1109/tip.2025.3541564
Xun Zhou, Guangjie Han, Guoxiong Zhou, Yongfei Xue, Mingjie Lv, Aibin Chen
{"title":"Hybrid DQN-based Low-Computational Reinforcement Learning Object Detection with Adaptive Dynamic Reward Function and ROI Align-based Bounding Box Regression","authors":"Xun Zhou, Guangjie Han, Guoxiong Zhou, Yongfei Xue, Mingjie Lv, Aibin Chen","doi":"10.1109/tip.2025.3541564","DOIUrl":"https://doi.org/10.1109/tip.2025.3541564","url":null,"abstract":"","PeriodicalId":13217,"journal":{"name":"IEEE Transactions on Image Processing","volume":"23 1","pages":""},"PeriodicalIF":10.6,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143451613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep Face Leakage: Inverting High-quality Faces from Gradients Using Residual Optimization
IF 10.6 1区 计算机科学
IEEE Transactions on Image Processing Pub Date : 2025-02-17 DOI: 10.1109/tip.2025.3533210
Xu Zhang, Tao Xiang, Shangwei Guo, Fei Yang, Tianwei Zhang
{"title":"Deep Face Leakage: Inverting High-quality Faces from Gradients Using Residual Optimization","authors":"Xu Zhang, Tao Xiang, Shangwei Guo, Fei Yang, Tianwei Zhang","doi":"10.1109/tip.2025.3533210","DOIUrl":"https://doi.org/10.1109/tip.2025.3533210","url":null,"abstract":"","PeriodicalId":13217,"journal":{"name":"IEEE Transactions on Image Processing","volume":"13 1","pages":""},"PeriodicalIF":10.6,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143443345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Onet: Twin U-Net Architecture for Unsupervised Binary Semantic Segmentation in Radar and Remote Sensing Images
IF 10.6 1区 计算机科学
IEEE Transactions on Image Processing Pub Date : 2025-01-23 DOI: 10.1109/tip.2025.3530816
Yi Zhou, Hang Su, Tian Wang, Qing Hu
{"title":"Onet: Twin U-Net Architecture for Unsupervised Binary Semantic Segmentation in Radar and Remote Sensing Images","authors":"Yi Zhou, Hang Su, Tian Wang, Qing Hu","doi":"10.1109/tip.2025.3530816","DOIUrl":"https://doi.org/10.1109/tip.2025.3530816","url":null,"abstract":"","PeriodicalId":13217,"journal":{"name":"IEEE Transactions on Image Processing","volume":"87 1","pages":""},"PeriodicalIF":10.6,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143026306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Combining Pre- and Post-Demosaicking Noise Removal for RAW Video 结合Pre- and - post - demosaked Noise Removal for RAW视频
IF 10.6 1区 计算机科学
IEEE Transactions on Image Processing Pub Date : 2025-01-15 DOI: 10.1109/tip.2025.3527886
M. Sánchez-Beeckman, A. Buades, N. Brandonisio, B. Kanoun
{"title":"Combining Pre- and Post-Demosaicking Noise Removal for RAW Video","authors":"M. Sánchez-Beeckman, A. Buades, N. Brandonisio, B. Kanoun","doi":"10.1109/tip.2025.3527886","DOIUrl":"https://doi.org/10.1109/tip.2025.3527886","url":null,"abstract":"","PeriodicalId":13217,"journal":{"name":"IEEE Transactions on Image Processing","volume":"23 1","pages":""},"PeriodicalIF":10.6,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142986397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Harnessing Multi-modal Large Language Models for Measuring and Interpreting Color Differences 利用多模态大语言模型测量和解释色差
IF 10.6 1区 计算机科学
IEEE Transactions on Image Processing Pub Date : 2025-01-01 DOI: 10.1109/tip.2024.3522802
Zhihua Wang, Yu Long, Qiuping Jiang, Chao Huang, Xiaochun Cao
{"title":"Harnessing Multi-modal Large Language Models for Measuring and Interpreting Color Differences","authors":"Zhihua Wang, Yu Long, Qiuping Jiang, Chao Huang, Xiaochun Cao","doi":"10.1109/tip.2024.3522802","DOIUrl":"https://doi.org/10.1109/tip.2024.3522802","url":null,"abstract":"","PeriodicalId":13217,"journal":{"name":"IEEE Transactions on Image Processing","volume":"34 1","pages":""},"PeriodicalIF":10.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142911627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SDCoT++: Improved Static-Dynamic Co-Teaching for Class-Incremental 3D Object Detection SDCoT++:改进的静态-动态协同教学——增量三维物体检测
IF 10.6 1区 计算机科学
IEEE Transactions on Image Processing Pub Date : 2024-12-31 DOI: 10.1109/tip.2024.3518774
Na Zhao, Peisheng Qian, Fang Wu, Xun Xu, Xulei Yang, Gim Hee Lee
{"title":"SDCoT++: Improved Static-Dynamic Co-Teaching for Class-Incremental 3D Object Detection","authors":"Na Zhao, Peisheng Qian, Fang Wu, Xun Xu, Xulei Yang, Gim Hee Lee","doi":"10.1109/tip.2024.3518774","DOIUrl":"https://doi.org/10.1109/tip.2024.3518774","url":null,"abstract":"","PeriodicalId":13217,"journal":{"name":"IEEE Transactions on Image Processing","volume":"34 1","pages":""},"PeriodicalIF":10.6,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142908422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nonconvex Robust High-Order Tensor Completion Using Randomized Low-Rank Approximation 使用随机低库近似的非凸稳健高阶张量补全
IF 10.6 1区 计算机科学
IEEE Transactions on Image Processing Pub Date : 2024-04-10 DOI: 10.1109/tip.2024.3385284
Wenjin Qin, Hailin Wang, Feng Zhang, Weijun Ma, Jianjun Wang, Tingwen Huang
{"title":"Nonconvex Robust High-Order Tensor Completion Using Randomized Low-Rank Approximation","authors":"Wenjin Qin, Hailin Wang, Feng Zhang, Weijun Ma, Jianjun Wang, Tingwen Huang","doi":"10.1109/tip.2024.3385284","DOIUrl":"https://doi.org/10.1109/tip.2024.3385284","url":null,"abstract":"","PeriodicalId":13217,"journal":{"name":"IEEE Transactions on Image Processing","volume":"22 1","pages":""},"PeriodicalIF":10.6,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140544990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Towards Transparent Deep Image Aesthetics Assessment with Tag-based Content Descriptors. 利用基于标签的内容描述符实现透明的深度图像美学评估
IF 10.6 1区 计算机科学
IEEE Transactions on Image Processing Pub Date : 2023-08-30 DOI: 10.1109/TIP.2023.3308852
Jingwen Hou, Weisi Lin, Yuming Fang, Haoning Wu, Chaofeng Chen, Liang Liao, Weide Liu
{"title":"Towards Transparent Deep Image Aesthetics Assessment with Tag-based Content Descriptors.","authors":"Jingwen Hou, Weisi Lin, Yuming Fang, Haoning Wu, Chaofeng Chen, Liang Liao, Weide Liu","doi":"10.1109/TIP.2023.3308852","DOIUrl":"10.1109/TIP.2023.3308852","url":null,"abstract":"<p><p>Deep learning approaches for Image Aesthetics Assessment (IAA) have shown promising results in recent years, but the internal mechanisms of these models remain unclear. Previous studies have demonstrated that image aesthetics can be predicted using semantic features, such as pre-trained object classification features. However, these semantic features are learned implicitly, and therefore, previous works have not elucidated what the semantic features are representing. In this work, we aim to create a more transparent deep learning framework for IAA by introducing explainable semantic features. To achieve this, we propose Tag-based Content Descriptors (TCDs), where each value in a TCD describes the relevance of an image to a human-readable tag that refers to a specific type of image content. This allows us to build IAA models from explicit descriptions of image contents. We first propose the explicit matching process to produce TCDs that adopt predefined tags to describe image contents. We show that a simple MLP-based IAA model with TCDs only based on predefined tags can achieve an SRCC of 0.767, which is comparable to most state-of-the-art methods. However, predefined tags may not be sufficient to describe all possible image contents that the model may encounter. Therefore, we further propose the implicit matching process to describe image contents that cannot be described by predefined tags. By integrating components obtained from the implicit matching process into TCDs, the IAA model further achieves an SRCC of 0.817, which significantly outperforms existing IAA methods. Both the explicit matching process and the implicit matching process are realized by the proposed TCD generator. To evaluate the performance of the proposed TCD generator in matching images with predefined tags, we also labeled 5101 images with photography-related tags to form a validation set. And experimental results show that the proposed TCD generator can meaningfully assign photography-related tags to images.</p>","PeriodicalId":13217,"journal":{"name":"IEEE Transactions on Image Processing","volume":"PP ","pages":""},"PeriodicalIF":10.6,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10207498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Field-of-View IoU for Object Detection in 360° Images. 用于 360° 图像中物体检测的视场 IoU。
IF 10.6 1区 计算机科学
IEEE Transactions on Image Processing Pub Date : 2023-07-21 DOI: 10.1109/TIP.2023.3296013
Miao Cao, Satoshi Ikehata, Kiyoharu Aizawa
{"title":"Field-of-View IoU for Object Detection in 360° Images.","authors":"Miao Cao, Satoshi Ikehata, Kiyoharu Aizawa","doi":"10.1109/TIP.2023.3296013","DOIUrl":"10.1109/TIP.2023.3296013","url":null,"abstract":"<p><p>360° cameras have gained popularity over the last few years. In this paper, we propose two fundamental techniques-Field-of-View IoU (FoV-IoU) and 360Augmentation for object detection in 360° images. Although most object detection neural networks designed for perspective images are applicable to 360° images in equirectangular projection (ERP) format, their performance deteriorates owing to the distortion in ERP images. Our method can be readily integrated with existing perspective object detectors and significantly improves the performance. The FoV-IoU computes the intersection-over-union of two Field-of-View bounding boxes in a spherical image which could be used for training, inference, and evaluation while 360Augmentation is a data augmentation technique specific to 360° object detection task which randomly rotates a spherical image and solves the bias due to the sphere-to-plane projection. We conduct extensive experiments on the 360° indoor dataset with different types of perspective object detectors and show the consistent effectiveness of our method.</p>","PeriodicalId":13217,"journal":{"name":"IEEE Transactions on Image Processing","volume":"PP ","pages":""},"PeriodicalIF":10.6,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9848778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信