{"title":"Nonconvex Robust High-Order Tensor Completion Using Randomized Low-Rank Approximation","authors":"Wenjin Qin;Hailin Wang;Feng Zhang;Weijun Ma;Jianjun Wang;Tingwen Huang","doi":"10.1109/TIP.2024.3385284","DOIUrl":null,"url":null,"abstract":"Within the \n<italic>tensor singular value decomposition</i>\n (T-SVD) framework, existing robust low-rank tensor completion approaches have made great achievements in various areas of science and engineering. Nevertheless, these methods involve the T-SVD based low-rank approximation, which suffers from high computational costs when dealing with large-scale tensor data. Moreover, most of them are only applicable to third-order tensors. Against these issues, in this article, two efficient low-rank tensor approximation approaches fusing random projection techniques are first devised under the order-\n<italic>d</i>\n (\n<inline-formula> <tex-math>$d\\geq 3$ </tex-math></inline-formula>\n) T-SVD framework. Theoretical results on error bounds for the proposed randomized algorithms are provided. On this basis, we then further investigate the robust high-order tensor completion problem, in which a double nonconvex model along with its corresponding fast optimization algorithms with convergence guarantees are developed. Experimental results on large-scale synthetic and real tensor data illustrate that the proposed method outperforms other state-of-the-art approaches in terms of both computational efficiency and estimated precision.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"33 ","pages":"2835-2850"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10496551/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Within the
tensor singular value decomposition
(T-SVD) framework, existing robust low-rank tensor completion approaches have made great achievements in various areas of science and engineering. Nevertheless, these methods involve the T-SVD based low-rank approximation, which suffers from high computational costs when dealing with large-scale tensor data. Moreover, most of them are only applicable to third-order tensors. Against these issues, in this article, two efficient low-rank tensor approximation approaches fusing random projection techniques are first devised under the order-
d
(
$d\geq 3$
) T-SVD framework. Theoretical results on error bounds for the proposed randomized algorithms are provided. On this basis, we then further investigate the robust high-order tensor completion problem, in which a double nonconvex model along with its corresponding fast optimization algorithms with convergence guarantees are developed. Experimental results on large-scale synthetic and real tensor data illustrate that the proposed method outperforms other state-of-the-art approaches in terms of both computational efficiency and estimated precision.