{"title":"CsWRKY17 enhances Al accumulation by promoting pectin deesterification in tea plant","authors":"Danjuan Huang, Jianqiang Ma, Xun Chen, Hongjuan Wang, Rongrong Tan, Long Jiao, Jiedan Chen, Yingxin Mao, Liang Chen","doi":"10.1093/hr/uhaf085","DOIUrl":"https://doi.org/10.1093/hr/uhaf085","url":null,"abstract":"The tea plant (Camellia sinensis) is a typical crop that accumulates aluminum (Al). Although the physiological mechanisms by which this occurs are well understood, their molecular mechanisms remain elusive. Here, an integrative approach combining quantitative trait locus (QTL) mapping of controlled hybridized populations and comparative transcriptomic analysis using samples treated with different Al concentrations was applied to identify candidate genes associated with Al accumulation in tea plants. Consequently, 41 candidate genes were selected using genome functional annotation of the qAl09 locus in the region of 35,256,594–5,737,8817 bp on chromosome 7. Finally, a key gene, CsWRKY17, was identified as encoding a nucleus-localized transcription factor (TF) involved in regulating Al accumulation in tea plants, given the finding of a high correlation between its expression level and Al content in leaves. Overexpression of CsWRKY17 in Arabidopsis increased pectin deesterification, sensitivity to Al stress, and Al accumulation in leaves. Expression of the pectin methylesterase gene CsPME6 was found to be highly consistent with CsWRKY17 expression under various Al concentrations. In addition, experiments using a yeast monoclonal, electrophoresis mobility shift assay, and dual-luciferase reporter system confirmed that CsWRKY17 activated CsPME6 promoter activity. Antisense oligodeoxynucleotide silencing revealed a positive association between CsPME6 expression and Al accumulation in tea shoots. In conclusion, this study suggests that CsWRKY17 promoted the process of pectin deesterification by binding to the CsPME6 promoter, thereby enhancing Al enrichment in tea plants. Our findings lay the foundation for studying the precise mechanisms through which Al enriched in tea leaves.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"16 1","pages":""},"PeriodicalIF":8.7,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143599905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Telomere-to-telomere genome of Pucai (蒲菜) (Typha angustifolia L.), a distinctive semi-aquatic vegetable with lignin and chlorophyll as quality characteristics","authors":"Ya-Peng Li, Li-Yao Su, Ting Huang, Hui Liu, Shan-Shan Tan, Yuan-Jie Deng, Ya-Hui Wang, Ai-Sheng Xiong","doi":"10.1093/hr/uhaf079","DOIUrl":"https://doi.org/10.1093/hr/uhaf079","url":null,"abstract":"Pucai (蒲菜) (Typha angustifolia L.) within the Typha spp. is a distinctive semi-aquatic vegetable. Lignin and chlorophyll are two crucial traits and quality indicators for Pucai. In this study, we assembled a 207.00 Mb high-quality gapless genome of Pucai, telomere-to-telomere (T2T) level with a contig N50 length of 13.73 Mb. The most abundant type of repetitive sequence, comprising 16.98% of the genome, is the LTR-RT. A total of 30 telomeres and 15 centromeric regions were predicted. Gene families related to lignin, chlorophyll biosynthesis, and disease resistance were greatly expanded, which played important roles in the adaptation of Pucai to wetlands. The slow evolution of Pucai was indicated by the σ WGD-associated Ks peaks from different Poales and the low activity of recent LTR-RT in Pucai. Meanwhile, we found a unique WGD event in Typhaceae. A statistical analysis and annotation of genomic variations were conducted in inter-species and intra-species of Typha. Based on the T2T genome, we constructed lignin and chlorophyll metabolic pathways of Pucai. Subsequently, the candidate structural genes and transcription factors that regulate lignin and chlorophyll biosynthesis were identified. The T2T genomic resources will provide molecular information for lignin and chlorophyll accumulation and help to understand genome evolution in Pucai.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"68 1","pages":""},"PeriodicalIF":8.7,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143599904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yujie Dai, Xiaodan Li, Yeling He, Liya Zhu, Yan Bi, Fengming Song, Dayong Li
{"title":"The E3 ubiquitin ligase SlATL2 suppresses tomato immunity by promoting SlCSN5a degradation during pseudomonas syringae pv. Tomato DC3000 infection","authors":"Yujie Dai, Xiaodan Li, Yeling He, Liya Zhu, Yan Bi, Fengming Song, Dayong Li","doi":"10.1093/hr/uhaf078","DOIUrl":"https://doi.org/10.1093/hr/uhaf078","url":null,"abstract":"Plant immunity involves complex regulatory mechanisms that mediate the activation of defense responses against pathogens. Protein degradation via ubiquitination plays a crucial role in modulating these defenses, with E3 ubiquitin ligases functioning as central regulators. This study investigates the role of SlATL2, an ARABIDOPSIS TÓXICOS EN LEVADURA (ATL)-type E3 ubiquitin ligase localized in the plasma membrane, in the immune response of tomato plants against Pseudomonas syringae pv. tomato (Pst) DC3000. Our findings demonstrate that SlATL2 expression is induced upon Pst DC3000 infection and treatment with defense hormones salicylic acid (SA) and jasmonic acid (JA). Functionally, SlATL2 negatively regulates immune responses, impairing resistance to Pst DC3000 and suppressing flg22-triggered immunity. In addition, SlATL2 limits pathogen-induced reactive oxygen species (ROS) and callose accumulation by targeting the COP9 signalosome subunit 5a (SlCSN5a), a key positive regulator of tomato defense responses against Pst DC3000. This interaction, which occurs via the N-terminal residue of SlATL2, results in the ubiquitination and 26S proteasomal degradation of SlCSN5a, thereby suppressing SA-dependent expression of defense response genes associated and limiting ROS production. This work sheds light on the molecular mechanism through which the E3 ubiquitin ligase SlATL2 attenuates tomato immune responses by targeting a COP9 signalosome subunit for degradation. These discoveries deepen our insights into the post-translational mechanisms governing plant immune responses and provide fresh opportunities to bolster crop resistance against bacterial pathogens.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"22 1","pages":""},"PeriodicalIF":8.7,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143599907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Uncovering differences in cadmium accumulation capacity of different Ipomoea aquatica cultivars at the level of root cell types","authors":"Chuang Shen, Bai-Fei Huang, Qiong Liao, Kai-Feng Chen, Jun-Liang Xin, Ying-Ying Huang","doi":"10.1093/hr/uhaf077","DOIUrl":"https://doi.org/10.1093/hr/uhaf077","url":null,"abstract":"Water spinach (Ipomoea aquatica) can accumulate cadmium (Cd) even in mildly contaminated soils, but the roles of its root tip cell types in Cd fixation and transport remain unclear. Single-cell RNA sequencing revealed nine cell types in root tips in both the QLQ cultivar (low Cd accumulation) and the T308 cultivar (high Cd accumulation). High expression of LAC2 and PER72 in the QLQ epidermis was associated with enhanced lignin deposition, which may facilitate fixation of Cd and reduce its translocation to the shoot. In T308, PER72 and hormone-related genes (PIN1, ARF8, IAA17, and EIN3) were upregulated, which was hypothesized to promote xylem and trichoblast development, potentially facilitating Cd uptake and transport. Fluorescence assays suggested that the higher pectin demethylation and lignin content in QLQ may limit Cd movement, whereas the more developed tissues in T308 may contribute to increased Cd accumulation in the shoots. These findings clarify the mechanisms by which Cd accumulates in water spinach and offer insights for mitigating Cd uptake in crops.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"16 1","pages":""},"PeriodicalIF":8.7,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143608021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advances in basic biology of alfalfa (Medicago sativa L.): a comprehensive overview","authors":"Yuanyuan Zhang, Lei Wang","doi":"10.1093/hr/uhaf081","DOIUrl":"https://doi.org/10.1093/hr/uhaf081","url":null,"abstract":"Alfalfa (Medicago sativa L.), a perennial legume forage, has been broadly cultivated owing to a variety of favorable characteristics, including comprehensive ecological adaptability, superior nutritive value and palatability, and nitrogen fixation capacity. The productivity traits of alfalfa, specifically its biomass yield and forage quality, are significantly influenced by a series of determinants, including internal developmental factors and external environmental cues. However, the regulatory mechanisms underlying the fundamental biological problems of alfalfa remain elusive. Here, we conducted a comprehensive review focusing on the genomics of alfalfa, advancements in gene-editing technologies, and the identification of genes that control pivotal agronomic characteristics, including biomass formation, nutritional quality, flowering time, and resistance to various stresses. Moreover, a molecular design roadmap for the \"ideal alfalfa\" has been proposed and the potential of pangenomes, self-incompatibility mechanisms, de novo domestication, and intelligent breeding strategies to enhance alfalfa's yield, quality, and resilience were further discussed. This review will provide comprehensive information on the basic biology of alfalfa and offer new insights for the cultivation of ideal alfalfa.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"16 1","pages":""},"PeriodicalIF":8.7,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143599906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"CYP98A monooxygenases: a key enzyme family in plant phenolic compound biosynthesis","authors":"Zheng Zhou, Yonghao Duan, Yajing Li, Pan Zhang, Qing Li, Luyao Yu, Cuicui Han, Juncheng Huo, Wansheng Chen, Ying Xiao","doi":"10.1093/hr/uhaf074","DOIUrl":"https://doi.org/10.1093/hr/uhaf074","url":null,"abstract":"Phenolic compounds are derived from the phenylpropanoid metabolic pathways of plants and include phenylpropionic acids, lignins, coumarins and flavonoids. These compounds are among the most abundant and diverse classes of secondary metabolites found throughout the plant kingdom. Phenolic compounds play critical roles in the growth, development, and stress resistance of horticultural plants. Moreover, some phenolic compounds exhibit substantial biological activities, and they are widely utilized across various sectors, such as the pharmaceutical and food industries. The cytochrome P450 monooxygenase 98A subfamily (CYP98A) is involved mainly in the biosynthesis of phenolic compounds, mediating the meta-hydroxylation of aromatic rings in the common phenylpropane biosynthesis pathways of phenolic compounds. However, research on this family of oxidases is currently fragmented, and a systematic and comprehensive review has not yet been conducted. This review offers an exhaustive summary of the molecular features of the CYP98A family and the functions of CYP98A monooxygenases in the biosynthesis of different types of phenolic compounds. In addition, this study provides a reference for the exploration and functional study of plant CYP98A family enzymes. An enhanced understanding of CYP98A monooxygenases can help in the cultivation of high-quality horticultural plants with increased resistance to biotic and abiotic stresses and increased accumulation of natural bioactive compounds via metabolic engineering strategies. Moreover, the structural optimization and modification of CYP98A monooxygenases can provide additional potential targets for synthetic biology, enabling the efficient in vitro production of important phenolic compounds to address production supply conflicts.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"45 1","pages":""},"PeriodicalIF":8.7,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143599908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jean-Sébastien Reynard, Justine Brodard, David Roquis, Eric Droz, Komlan Avia, Thibaut Verdenal, Vivian Zufferey, Thierry Lacombe, Daniel Croll, Jean-Laurent Spring
{"title":"A divergent haplotype with a large deletion at the berry color locus causes a white-skinned phenotype in grapevine","authors":"Jean-Sébastien Reynard, Justine Brodard, David Roquis, Eric Droz, Komlan Avia, Thibaut Verdenal, Vivian Zufferey, Thierry Lacombe, Daniel Croll, Jean-Laurent Spring","doi":"10.1093/hr/uhaf069","DOIUrl":"https://doi.org/10.1093/hr/uhaf069","url":null,"abstract":"The current genetic model explaining berry skin color in Vitis vinifera is incomplete and fails to predict berry skin color phenotypes for one allele of VvMybA1, referred to as VvMybA1_SUB. Our study focuses on this specific allele, revealing that the haplotype containing VvMybA1_SUB (haplotype F) represents an ancient lineage of the berry color locus. Within haplotype F, we identified two functional subhaplotypes, HapF1 and HapF2, associated with black-skinned phenotype, and one non-functional subhaplotype, HapFDEL, responsible for white-skinned phenotype. HapF1 likely originated from wild populations domesticated in the Near East and subsequently spread globally with the expansion of viticulture. In contrast, HapF2 has a more restricted distribution and may have emerged from hybridization events between cultivated grapevines and local wild populations as viticulture migrated to the Italian peninsula. Furthermore, we found that in white-skinned berry cultivar, HapF has undergone a large deletion at the berry color locus, removing the majority of the VvMybA genes. Previous works suggested a single common origin for white-skinned varieties during grapevine domestication. Our results challenge this notion, instead proposing that white-skinned grape cultivars arose at least twice during grapevine domestication history. Alongside the major haplotype A, some white-skinned cultivars, such as cv. ‘Sultanina’ harbor HapFDEL. Since HapFDEL is present only in table grape varieties, we suggest that it likely arose from a recent domestication event and dispersed along the ancient Silk Road into East Asia. These findings enhance our understanding of the genetic diversity and evolutionary trajectory of grapevine cultivars, offering insights into their domestication and spread across different geographical regions.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"52 1","pages":""},"PeriodicalIF":8.7,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143570464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Expression of poplar sex-determining gene affects plant drought tolerance and the underlying molecular mechanism","authors":"Jing Lu, Yonghua Yang, Tongming Yin","doi":"10.1093/hr/uhaf066","DOIUrl":"https://doi.org/10.1093/hr/uhaf066","url":null,"abstract":"It is frequently observed that plant sexes differ in their response to environmental stress. Poplars are dioecious plants, and sex separation of poplars is triggered by the sex-limited expression of the poplar sex-determining gene FERR. In this study, we over-expressed FERR in a male poplar and knocked it out in a female poplar. The over-expression lines exhibited distinct morphological and physiological changes rendering the transformed plants more tolerant to drought stress. By contrast, no obvious change in drought tolerance was observed in the knockout lines. Transcriptome sequencing and molecular interaction analysis demonstrated that the effect of FERR on drought tolerance was conferred by competitive interaction with Protein Phosphatase 2C (PP2C) and SNF1-related protein kinase 2 (SnRK2). Under drought stress, a FERR-SnRK2s-ARR5 complex forms and activates the ABA signaling pathway. Our results provide direct evidence that the expression of the poplar sex-determining gene pleiotropically affects plant drought tolerance.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"1 1","pages":""},"PeriodicalIF":8.7,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143546299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"WRKY27-SPDS1 module of Ichang papeda (Citrus ichangensis) promotes cold tolerance by modulating spermidine content","authors":"Jing Qu, Peng Xiao, Yilei Wang, Yue Wang, Wei Xiao, Yu Zhang, Xiaoyong Xu, Ji-Hong Liu","doi":"10.1093/hr/uhaf065","DOIUrl":"https://doi.org/10.1093/hr/uhaf065","url":null,"abstract":"Spermidine (Spd) is one of the predominant polyamines in higher plants and plays a crucial role in combating various abiotic stresses. However, the molecular functions and underlying regulatory mechanisms associated with plant spermidine synthase (SPDS) genes in cold tolerance remain poorly understood. In this study, cold treatment markedly induced Spd accumulation and enhanced SPDS activity in Ichang papeda (Citrus ichangensis), a cold-hardy plant in Citrus genus. Exogenous Spd supply led to dramatically improved cold tolerance. Two SPDS genes (CiSPDS1 and CiSPDS2) were identified in Ichang papeda, but only CiSPDS1 was substantially up-regulated by cold. Overexpressing of CiSPDS1 in both tobacco (Nicotiana tabacum) and lemon (C. limon), a cold-sensitive Citrus species, promoted Spd synthesis and enhanced cold tolerance in the transgenic plants. In contrast, knockdown of CiSPDS1 in Ichang papeda by virus-induced gene silencing (VIGS) repressed Spd synthesis and greatly impaired the cold tolerance, which was restored by exogenous replenishment of Spd. In addition, we demonstrated that WRKY27 of Ichang papeda (CiWRKY27) directly bound to and activated the CiSPDS1 promoter through interacting with a W-box cis-acting element. Meanwhile, VIGS-mediated silencing of CiWRKY27 resulted in marked reduction of CiSPDS1 transcript levels and Spd contents and significantly impaired the cold tolerance in Ichang papeda. Taken together, this study illustrated the role of CiSPDS1 in cold tolerance and identified it as a direct target of CiWRKY27. These findings provide insight into the regulatory mechanism by which the molecular module CiWRKY27-CiSPDS1 regulates Spd accumulation for modulation of cold tolerance.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"85 1","pages":""},"PeriodicalIF":8.7,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143546298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiahao Zhao, Shuhui Zhang, Zhicheng Yu, Tingting Gu, Jie Zhang, Lingyu Meng, Zijing Chen, Zongying Zhang, Nan Wang, Xuesen Chen, Wenjun Liu
{"title":"The transcription factor MdWRKY9 is involved in jasmonic acid mediated salt stress tolerance in apple","authors":"Jiahao Zhao, Shuhui Zhang, Zhicheng Yu, Tingting Gu, Jie Zhang, Lingyu Meng, Zijing Chen, Zongying Zhang, Nan Wang, Xuesen Chen, Wenjun Liu","doi":"10.1093/hr/uhaf068","DOIUrl":"https://doi.org/10.1093/hr/uhaf068","url":null,"abstract":"Salt stress is an important abiotic stress affecting the growth and fruit quality of apple fruits. Although jasmonic acid hormones and WRKY transcription factors have both been reported to be involved in plant salt stress responses, the molecular mechanisms by which JA-mediated WRKY transcription factors regulate salt stress in apples remain unclear. Here, we report the identification of a WRKY family TF from apple, MdWRKY9, and its involvement in apple salt tolerance by regulating the expression of Na+/H+ antiporters, MdNHX1 and MdSOS2. Furthermore, we show that the protein repressors MdJAZ5 and MdJAZ10 in the JA signaling pathway can both interact with MdWRKY9 to form a complex and inhibit its DNA binding and transcriptional activation activity. The JA signal triggers the degradation of MdJAZ5 and MdJAZ10 proteins by the 26S proteasome, disrupting the JAZ-WRKY protein complex and thereby releasing MdWRKY9 to activate downstream gene expression, promoting salt tolerance in apples. These findings provide important insights into the molecular mechanism of the WRKY transcription factors in JA-mediated salt tolerance in plants.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"85 1","pages":""},"PeriodicalIF":8.7,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143546592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}