Mao Luo, Ziqi Jiang, Ping Wang, Yangmei Chen, Aijun Chen, Bin Wei
{"title":"HDAC1-mediated regulation of KDM1A in pemphigus vulgaris: unlocking mechanisms on ERK pathway activation and cohesion loss.","authors":"Mao Luo, Ziqi Jiang, Ping Wang, Yangmei Chen, Aijun Chen, Bin Wei","doi":"10.1093/hmg/ddae090","DOIUrl":"10.1093/hmg/ddae090","url":null,"abstract":"<p><p>Pemphigus vulgaris (PV) is an autoimmune skin disorder characterized by the loss of cell cohesion, with the histone deacetylase 1 (HDAC1) and lysine demethylase 1A (KDM1A) playing critical roles in its pathogenesis. This study aimed to elucidate the molecular mechanisms behind PV, focusing on the function of HDAC1 and KDM1A in disease onset and progression. Based on in vitro and in vivo PV models, we observed a significant increase in HDAC1 mRNA and protein levels in skin tissues of PV patients. Inhibition of HDAC1 ameliorated cell damage and reduced the loss of cell cohesion in human epidermal keratinocytes (HEKs) induced by PV-IgG. Our findings suggest that HDAC1 regulates KDM1A expression through deacetylation, with a notable deficiency in KDM1A expression in PV. Overexpression of KDM1A mitigated cell damage and cohesion loss. The extracellular signal-regulated kinase (ERK) pathway serves as a downstream executor of the HDAC1/KDM1A axis. Inhibiting HDAC1 and increasing KDM1A expression suppressed ERK phosphorylation, reducing PV-related apoptosis. These insights provide a new perspective on treating PV, highlighting the therapeutic potential of targeting HDAC1 expression. The regulatory mechanism of the HDAC1/KDM1A/ERK axis offers crucial clues for understanding PV pathogenesis and developing novel treatments.</p>","PeriodicalId":13070,"journal":{"name":"Human molecular genetics","volume":" ","pages":"2133-2144"},"PeriodicalIF":3.1,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142545151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An endoplasmic reticulum stress related signature for clinically predicting prognosis of breast cancer patients.","authors":"Enqi Qiao, Jiayi Ye, Kaiming Huang","doi":"10.1093/hmg/ddae170","DOIUrl":"https://doi.org/10.1093/hmg/ddae170","url":null,"abstract":"<p><strong>Background: </strong>Endoplasmic Reticulum Stress (ER stress) was an important event in the development of breast cancer. We aimed to predict prognosis based on ER stress related key genes.</p><p><strong>Methods: </strong>Data of the RNA-seq and clinical information of breast cancer cases were downloaded from the TCGA database. A total of 4 genes related with ER stress was identified by the univariate Cox regression and Least Absolute Shrinkage and Selection Operator (LASSO)-penalized Cox proportional hazards regression analysis. The predictive ability of the ER stress model was evaluated by utilizing Kaplan-Meier curves and time-dependent receiver operating characteristic (ROC) curves. Moreover, we verified 4 genes expression and its relationship with clinical breast cancer cases in real-world.</p><p><strong>Results: </strong>4 genes including RNF186, BCAP31, SERPINA1, TAPBP were identified as a prognostic risk score model. Based on that, we found patients of breast cancer had a better survival with low-risk score. And also, ER stress model showed a good diagnostic efficacy with AUC curve. The risk score was significantly associated with patients' age, T stage and clinical stage. A nomogram was constructed to estimate individual survival. Further GO and KEGG analysis showed our model was related with immune infiltration. Patients of breast cancer with high-risk scores were usually accompanied with poor immune infiltration. It was predicted that high risk group was more sensitive to Vinorelbine, Docetaxel and Cisplatin. At last, we verified the expression of four signature genes using qRT-PCR and immunohistochemistry.</p><p><strong>Conclusion: </strong>Our ER stress model performed a valuable prediction on breast cancer patients.</p>","PeriodicalId":13070,"journal":{"name":"Human molecular genetics","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142828367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rudradip Pattanayak, Roschongporn Ekkatine, Chad M Petit, Talene A Yacoubian
{"title":"14-3-3 phosphorylation inhibits 14-3-3θ's ability to regulate LRRK2 kinase activity and toxicity.","authors":"Rudradip Pattanayak, Roschongporn Ekkatine, Chad M Petit, Talene A Yacoubian","doi":"10.1093/hmg/ddae142","DOIUrl":"10.1093/hmg/ddae142","url":null,"abstract":"<p><p>LRRK2 mutations are among the most common genetic causes for Parkinson's disease (PD), and toxicity is associated with increased kinase activity. 14-3-3 proteins are key interactors that regulate LRRK2 kinase activity. Phosphorylation of the 14-3-3θ isoform at S232 is dramatically increased in human PD brains. Here we investigate the impact of 14-3-3θ phosphorylation on its ability to regulate LRRK2 kinase activity. Both wildtype and the non-phosphorylatable S232A 14-3-3θ mutant reduced the kinase activity of wildtype and G2019S LRRK2, whereas the phosphomimetic S232D 14-3-3θ mutant had minimal effects on LRRK2 kinase activity, as determined by measuring autophosphorylation at S1292 and T1503 and Rab10 phosphorylation. However, wildtype and both 14-3-3θ mutants similarly reduced the kinase activity of the R1441G LRRK2 mutant. 14-3-3θ phosphorylation did not promote global dissociation with LRRK2, as determined by co-immunoprecipitation and proximal ligation assays. 14-3-3s interact with LRRK2 at several phosphorylated serine/threonine sites, including T2524 in the C-terminal helix, which can fold back to regulate the kinase domain. Interaction between 14-3-3θ and phosphorylated T2524 LRRK2 was important for 14-3-3θ's ability to regulate kinase activity, as wildtype and S232A 14-3-3θ failed to reduce the kinase activity of G2019S/T2524A LRRK2. Finally, we found that the S232D mutation failed to protect against G2019S LRRK2-induced neurite shortening in primary cultures, while the S232A mutation was protective. We conclude that 14-3-3θ phosphorylation destabilizes the interaction of 14-3-3θ with LRRK2 at T2524, which consequently promotes LRRK2 kinase activity and toxicity.</p>","PeriodicalId":13070,"journal":{"name":"Human molecular genetics","volume":" ","pages":"2071-2083"},"PeriodicalIF":3.1,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11578116/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142345736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Peyton E Fuller, Victoria L Collis, Pallavi Sharma, Angelina M Burkett, Shaoteng Wang, Kyle A Brown, Nick Weir, Chris N Goulbourne, Ralph A Nixon, Thomas A Longden, Todd D Gould, Mervyn J Monteiro
{"title":"Pathophysiologic abnormalities in transgenic mice carrying the Alzheimer disease PSEN1 Δ440 mutation.","authors":"Peyton E Fuller, Victoria L Collis, Pallavi Sharma, Angelina M Burkett, Shaoteng Wang, Kyle A Brown, Nick Weir, Chris N Goulbourne, Ralph A Nixon, Thomas A Longden, Todd D Gould, Mervyn J Monteiro","doi":"10.1093/hmg/ddae139","DOIUrl":"10.1093/hmg/ddae139","url":null,"abstract":"<p><p>Mutations in PSEN1 were first discovered as a cause of Alzheimer's disease (AD) in 1995, yet the mechanism(s) by which the mutations cause disease still remains unknown. The generation of novel mouse models assessing the effects of different mutations could aid in this endeavor. Here we report on transgenic mouse lines made with the Δ440 PSEN1 mutation that causes AD with parkinsonism:- two expressing the un-tagged human protein and two expressing a HA-tagged version. Detailed characterization of these lines showed that Line 305 in particular, which expresses the untagged protein, develops age-dependent memory deficits and pathologic features, many of which are consistent with features found in AD. Key behavioral and physiological alterations found in the novel 305 line included an age-dependent deficit in spontaneous alternations in the Y-maze, a decrease in exploration of the center of an open field box, a decrease in the latency to fall on a rotarod, a reduction in synaptic strength and pair-pulse facilitation by electrophysiology, and profound alterations to cerebral blood flow regulation. The pathologic alterations found in the line included, significant neuronal loss in the hippocampus and cortex, astrogliosis, and changes in several proteins involved in synaptic and mitochondrial function, Ca2+ regulation, and autophagy. Taken together, these findings suggest that the transgenic lines will be useful for the investigation of AD pathogenesis.</p>","PeriodicalId":13070,"journal":{"name":"Human molecular genetics","volume":" ","pages":"2051-2070"},"PeriodicalIF":3.1,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11578115/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142345738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jing Li, Bo Xie, Hu Wang, QingKang Wang, YongYou Wu
{"title":"Investigating MATN3 and ASPN as novel drivers of gastric cancer progression via EMT pathways.","authors":"Jing Li, Bo Xie, Hu Wang, QingKang Wang, YongYou Wu","doi":"10.1093/hmg/ddae129","DOIUrl":"10.1093/hmg/ddae129","url":null,"abstract":"<p><p>Gastric cancer (GC) is a leading cause of cancer-related deaths globally, necessitating the identification of novel therapeutic targets. This study investigates the roles of MATN3 and ASPN in GC progression via the epithelial-mesenchymal transition (EMT) pathway. Analysis of the Cancer Genome Atlas-Stomach Adenocarcinoma (TCGA-STAD) dataset revealed that both MATN3 and ASPN are significantly upregulated in GC tissues and correlate with poor patient survival. Protein-protein interaction and co-expression analyses confirmed a direct interaction between MATN3 and ASPN, suggesting their synergistic role in EMT activation. Functional assays demonstrated that MATN3 promotes GC cell proliferation, migration, and invasion, while its knockdown inhibits these malignant behaviors and induces apoptosis. ASPN overexpression further amplified these oncogenic effects. In vivo, studies in a mouse model corroborated that co-overexpression of MATN3 and ASPN enhances tumor growth and metastasis. These findings highlight the MATN3-ASPN axis as a potential therapeutic target in GC, offering new insights into the molecular mechanisms driving GC progression.</p>","PeriodicalId":13070,"journal":{"name":"Human molecular genetics","volume":" ","pages":"2035-2050"},"PeriodicalIF":3.1,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142285998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ningping Feng, Ajeet Mandal, Ananya Jambhale, Pranav Narnur, Gang Chen, Nirmala Akula, Robin Kramer, Bhaskar Kolachana, Qing Xu, Francis J McMahon, Barbara K Lipska, Pavan K Auluck, Stefano Marenco
{"title":"Schizophrenia risk-associated SNPs affect expression of microRNA 137 host gene: a postmortem study.","authors":"Ningping Feng, Ajeet Mandal, Ananya Jambhale, Pranav Narnur, Gang Chen, Nirmala Akula, Robin Kramer, Bhaskar Kolachana, Qing Xu, Francis J McMahon, Barbara K Lipska, Pavan K Auluck, Stefano Marenco","doi":"10.1093/hmg/ddae130","DOIUrl":"10.1093/hmg/ddae130","url":null,"abstract":"<p><p>Common variants in the MicroRNA 137 host gene MIR137HG and its adjacent gene DPYD have been associated with schizophrenia risk and the latest Psychiatric Genomics Consortium (PGC). Genome-Wide Association Study on schizophrenia has confirmed and extended these findings. To elucidate the association of schizophrenia risk-associated SNPs in this genomic region, we examined the expression of both mature and immature transcripts of the miR-137 host gene (MIR137HG) in the dorsolateral prefrontal cortex (DLPFC) and subgenual anterior cingulate cortex (sgACC) of postmortem brain samples of donors with schizophrenia and psychiatrically-unaffected controls using qPCR and RNA-Seq approaches. No differential expression of miR-137, MIR137HG, or its transcripts was observed. Two schizophrenia risk-associated SNPs identified in the PGC study, rs11165917 (DLPFC: P = 2.0e-16; sgACC: P = 6.4e-10) and rs4274102 (DLPFC: P = 0.036; sgACC: P = 0.002), were associated with expression of the MIR137HG long non-coding RNA transcript MIR137HG-203 (ENST00000602672.2) in individuals of European ancestry. Carriers of the minor (risk) allele of rs11165917 had significantly lower expression of MIR137HG-203 compared with those carrying the major allele. However, we were unable to validate this result by short-read sequencing of RNA extracted from DLPFC or sgACC tissue. This finding suggests that immature transcripts of MIR137HG may contribute to genetic risk for schizophrenia.</p>","PeriodicalId":13070,"journal":{"name":"Human molecular genetics","volume":" ","pages":"1939-1947"},"PeriodicalIF":3.1,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142139905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The rs6576457 G > A variant in the MKRN3 gene promoter significantly increases the risk of central precocious puberty and lung cancer in Hubei Chinese population.","authors":"Feng Wu, Weiguang Zhou, Zhengchu Yue, Xiangyuan Deng, Wenqiang Kang, Zhiyan Yu, Haixia Zhang, Bixin Zhang, Xianhong Feng, Qiantao Xiong, Bifeng Chen","doi":"10.1093/hmg/ddae131","DOIUrl":"10.1093/hmg/ddae131","url":null,"abstract":"<p><p>Makorin RING finger protein 3 (MKRN3) is a key inhibitor of the hypothalamic-pituitary-gonadal (HPG) axis. The association between MKRN3 gene variants and central precocious puberty (CPP) has been repeatedly examined. In a recent study, MKRN3 has been assigned a role of tumor suppressor in lung carcinogenesis. Therefore, it is hypothesized that MKRN3 may be the link between CPP and lung cancer (LC), and certain MKRN3 gene variants may affect individuals' susceptibility to CPP and LC. The rs12441287, rs6576457 and rs2239669 in the MKRN3 gene were selected as the target variants. Sanger sequencing was applied to genotype them in two sets of case-control cohorts, namely 384 CPP girls and 422 healthy girls, 550 LC patients and 800 healthy controls. The results showed that rs6576457 but not rs12441287 or rs2239669 was significantly associated with the risk of CPP and LC. Their association with CPP risk was further confirmed in the following meta-analysis. Subsequent functional assays revealed that the rs6576457 genotypes were correlated with differentially expressed MKRN3, and the rs6576457 alleles affected the transcription repressor Oct-1 binding affinity to the MKRN3 promoter. Collectively, the MKRN3 gene rs6576457 may participate in the CPP pathology and LC tumorigenesis in the Hubei Chinese population. However, the present findings should be validated in additional investigations with larger samples from different ethnic populations.</p>","PeriodicalId":13070,"journal":{"name":"Human molecular genetics","volume":" ","pages":"1930-1938"},"PeriodicalIF":3.1,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142139906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Samantha Martin, Riku Katainen, Aurora Taira, Niko Välimäki, Ari Ristimäki, Toni Seppälä, Laura Renkonen-Sinisalo, Anna Lepistö, Kyösti Tahkola, Anne Mattila, Selja Koskensalo, Jukka-Pekka Mecklin, Kristiina Rajamäki, Kimmo Palin, Lauri A Aaltonen
{"title":"Lynch syndrome-associated and sporadic microsatellite unstable colorectal cancers: different patterns of clonal evolution yield highly similar tumours.","authors":"Samantha Martin, Riku Katainen, Aurora Taira, Niko Välimäki, Ari Ristimäki, Toni Seppälä, Laura Renkonen-Sinisalo, Anna Lepistö, Kyösti Tahkola, Anne Mattila, Selja Koskensalo, Jukka-Pekka Mecklin, Kristiina Rajamäki, Kimmo Palin, Lauri A Aaltonen","doi":"10.1093/hmg/ddae124","DOIUrl":"10.1093/hmg/ddae124","url":null,"abstract":"<p><p>Microsatellite unstable colorectal cancer (MSI-CRC) can arise through germline mutations in mismatch repair (MMR) genes in individuals with Lynch syndrome (LS), or sporadically through promoter methylation of the MMR gene MLH1. Despite the different origins of hereditary and sporadic MSI tumours, their genomic features have not been extensively compared. A prominent feature of MMR-deficient genomes is the occurrence of many indels in short repeat sequences, an understudied mutation type due to the technical challenges of variant calling in these regions. In this study, we performed whole genome sequencing and RNA-sequencing on 29 sporadic and 14 hereditary MSI-CRCs. We compared the tumour groups by analysing genome-wide mutation densities, microsatellite repeat indels, recurrent protein-coding variants, signatures of single base, doublet base, and indel mutations, and changes in gene expression. We show that the mutational landscapes of hereditary and sporadic MSI-CRCs, including mutational signatures and mutation densities genome-wide and in microsatellites, are highly similar. Only a low number of differentially expressed genes were found, enriched to interferon-γ regulated immune response pathways. Analysis of the variance in allelic fractions of somatic variants in each tumour group revealed higher clonal heterogeneity in sporadic MSI-CRCs. Our results suggest that the differing molecular origins of MMR deficiency in hereditary and sporadic MSI-CRCs do not result in substantial differences in the mutational landscapes of these tumours. The divergent patterns of clonal evolution between the tumour groups may have clinical implications, as high clonal heterogeneity has been associated with decreased tumour immunosurveillance and reduced responsiveness to immunotherapy.</p>","PeriodicalId":13070,"journal":{"name":"Human molecular genetics","volume":" ","pages":"1858-1872"},"PeriodicalIF":3.1,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11540923/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142046619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ladan Kalani, Bo-Hyun Kim, Alberto Ruiz de Chavez, Anastasia Roemer, Anna Mikhailov, Jonathan K Merritt, Katrina V Good, Robert L Chow, Kerry R Delaney, Michael J Hendzel, Zhaolan Zhou, Jeffrey L Neul, John B Vincent, Juan Ausió
{"title":"Testing the PEST hypothesis using relevant Rett mutations in MeCP2 E1 and E2 isoforms.","authors":"Ladan Kalani, Bo-Hyun Kim, Alberto Ruiz de Chavez, Anastasia Roemer, Anna Mikhailov, Jonathan K Merritt, Katrina V Good, Robert L Chow, Kerry R Delaney, Michael J Hendzel, Zhaolan Zhou, Jeffrey L Neul, John B Vincent, Juan Ausió","doi":"10.1093/hmg/ddae119","DOIUrl":"10.1093/hmg/ddae119","url":null,"abstract":"<p><p>Mutations in methyl-CpG binding protein 2 (MeCP2), such as the T158M, P152R, R294X, and R306C mutations, are responsible for most Rett syndrome (RTT) cases. These mutations often result in altered protein expression that appears to correlate with changes in the nuclear size; however, the molecular details of these observations are poorly understood. Using a C2C12 cellular system expressing human MeCP2-E1 isoform as well as mouse models expressing these mutations, we show that T158M and P152R result in a decrease in MeCP2 protein, whereas R306C has a milder variation, and R294X resulted in an overall 2.5 to 3 fold increase. We also explored the potential involvement of the MeCP2 PEST domains in the proteasome-mediated regulation of MeCP2. Finally, we used the R294X mutant to gain further insight into the controversial competition between MeCP2 and histone H1 in the chromatin context. Interestingly, in R294X, MeCP2 E1 and E2 isoforms were differently affected, where the E1 isoform contributes to much of the overall protein increase observed, while E2 decreases by half. The modes of MeCP2 regulation, thus, appear to be differently regulated in the two isoforms.</p>","PeriodicalId":13070,"journal":{"name":"Human molecular genetics","volume":" ","pages":"1833-1845"},"PeriodicalIF":3.1,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11540922/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141975542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hari Prasad, Idrees A Shah, Reuben Thomas Kurien, Sudipta Dhar Chowdhury, Sandhya S Visweswariah
{"title":"An integrated picture of chronic pancreatitis derived by mapping variants in multiple disease genes onto pathogenic pathways.","authors":"Hari Prasad, Idrees A Shah, Reuben Thomas Kurien, Sudipta Dhar Chowdhury, Sandhya S Visweswariah","doi":"10.1093/hmg/ddae127","DOIUrl":"10.1093/hmg/ddae127","url":null,"abstract":"<p><p>Chronic pancreatitis (CP) is an etiologically and genetically heterogeneous inflammatory syndrome characterised by progressive damage to the exocrine and endocrine components of the pancreas [ 1]. The multigenic paradigm of CP has sparked research in recent years [ 2]. We aimed to expand the current knowledge of genetic susceptibility of pancreatitis in patients of Indian origin. By employing whole-exome sequencing in an Indian hospital cohort, we dissect the genetic landscape associated with CP or recurrent acute pancreatitis (RAP). Notably, all patients had at least one genetic variant identified in a pancreatitis-risk gene, and most had a co-occurrence of a second variant in an additional risk gene. Based on the presence of both acinar and ductal gene variants in individual patients, we propose a two-hit hypothesis where variants in proteins expressed in both acinar and ductal cells are critical for RAP/CP development.</p>","PeriodicalId":13070,"journal":{"name":"Human molecular genetics","volume":" ","pages":"1887-1889"},"PeriodicalIF":3.1,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142092816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}