pre-miR-208a中罕见的DCM相关变异会破坏miRNA的成熟和功能。

IF 3.1 2区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yolan J Reckman, Jan Haas, Ingeborg van der Made, Simon G Williams, Iria Gomez Diaz, Mohammed Akhtar, Jens Mogensen, Torsten B Rasmussen, Eric Villard, Philippe Charron, Perry Elliott, Bernard D Keavney, Lorenzo Monserrat, Yigal M Pinto, Benjamin Meder, Anke J Tijsen
{"title":"pre-miR-208a中罕见的DCM相关变异会破坏miRNA的成熟和功能。","authors":"Yolan J Reckman, Jan Haas, Ingeborg van der Made, Simon G Williams, Iria Gomez Diaz, Mohammed Akhtar, Jens Mogensen, Torsten B Rasmussen, Eric Villard, Philippe Charron, Perry Elliott, Bernard D Keavney, Lorenzo Monserrat, Yigal M Pinto, Benjamin Meder, Anke J Tijsen","doi":"10.1093/hmg/ddaf069","DOIUrl":null,"url":null,"abstract":"<p><p>Dilated cardiomyopathy (DCM) is a major cause of heart failure (HF) defined by ventricular dilatation and systolic dysfunction. Although microRNAs (miRNAs) are known to affect HF development, little is known about the contribution of genetic variants in miRNAs or their precursors to the susceptibility or pathogenesis of DCM. We screened 1640 DCM cases for variants in cardiac miR-208a and miR-208b and their precursors. We identified four variants in the miR-208a pre-miRNA, which are present at very low frequencies in the general population. Two of these variants (+42G > T and +68G > T) alter a highly conserved nucleotide and the predicted pre-miRNA secondary structure. Both variants result in reduced mature miR-208a levels in overexpression experiments. The variant +42G > T also increased pre-miR-208a levels in these experiments, which indicates a maturation deficiency. Co-transfection of the overexpression constructs with a luciferase construct containing six miRNA binding sites revealed that both variants also impair repression of luciferase expression by miR-208a, indicative of also a loss of miR208a function. Together this indicates that these DCM-associated variants impair formation of mature miR208a. Combined with the role of miR-208a in cardiac contractility this suggests that variants +42G > T and +68G > T in pre-miR-208a may contribute to the DCM phenotype observed in these patients.</p>","PeriodicalId":13070,"journal":{"name":"Human molecular genetics","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rare DCM associated variants in pre-miR-208a disrupt miRNA maturation and function.\",\"authors\":\"Yolan J Reckman, Jan Haas, Ingeborg van der Made, Simon G Williams, Iria Gomez Diaz, Mohammed Akhtar, Jens Mogensen, Torsten B Rasmussen, Eric Villard, Philippe Charron, Perry Elliott, Bernard D Keavney, Lorenzo Monserrat, Yigal M Pinto, Benjamin Meder, Anke J Tijsen\",\"doi\":\"10.1093/hmg/ddaf069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dilated cardiomyopathy (DCM) is a major cause of heart failure (HF) defined by ventricular dilatation and systolic dysfunction. Although microRNAs (miRNAs) are known to affect HF development, little is known about the contribution of genetic variants in miRNAs or their precursors to the susceptibility or pathogenesis of DCM. We screened 1640 DCM cases for variants in cardiac miR-208a and miR-208b and their precursors. We identified four variants in the miR-208a pre-miRNA, which are present at very low frequencies in the general population. Two of these variants (+42G > T and +68G > T) alter a highly conserved nucleotide and the predicted pre-miRNA secondary structure. Both variants result in reduced mature miR-208a levels in overexpression experiments. The variant +42G > T also increased pre-miR-208a levels in these experiments, which indicates a maturation deficiency. Co-transfection of the overexpression constructs with a luciferase construct containing six miRNA binding sites revealed that both variants also impair repression of luciferase expression by miR-208a, indicative of also a loss of miR208a function. Together this indicates that these DCM-associated variants impair formation of mature miR208a. Combined with the role of miR-208a in cardiac contractility this suggests that variants +42G > T and +68G > T in pre-miR-208a may contribute to the DCM phenotype observed in these patients.</p>\",\"PeriodicalId\":13070,\"journal\":{\"name\":\"Human molecular genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human molecular genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/hmg/ddaf069\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human molecular genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/hmg/ddaf069","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

扩张型心肌病(DCM)是心衰(HF)的主要原因,心衰的定义是心室扩张和收缩功能障碍。虽然已知microrna (mirna)影响HF的发展,但对于mirna或其前体的遗传变异对DCM的易感性或发病机制的贡献知之甚少。我们筛选了1640例DCM病例,检测心脏miR-208a和miR-208b及其前体的变异。我们确定了miR-208a pre-miRNA中的四种变体,它们在一般人群中以非常低的频率存在。其中两个变体(+42G > T和+68G > T)改变了一个高度保守的核苷酸和预测的pre-miRNA二级结构。在过表达实验中,这两种变体导致成熟miR-208a水平降低。在这些实验中,变体+42G > T也增加了pre-miR-208a水平,这表明成熟缺陷。将过表达构建体与含有6个miRNA结合位点的荧光素酶构建体共转染发现,这两种变体也会损害miR-208a对荧光素酶表达的抑制,这也表明miR208a功能的丧失。这表明,这些与dcm相关的变异损害了成熟miR208a的形成。结合miR-208a在心脏收缩力中的作用,这表明pre-miR-208a中的+42G > T和+68G > T变异可能有助于在这些患者中观察到的DCM表型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rare DCM associated variants in pre-miR-208a disrupt miRNA maturation and function.

Dilated cardiomyopathy (DCM) is a major cause of heart failure (HF) defined by ventricular dilatation and systolic dysfunction. Although microRNAs (miRNAs) are known to affect HF development, little is known about the contribution of genetic variants in miRNAs or their precursors to the susceptibility or pathogenesis of DCM. We screened 1640 DCM cases for variants in cardiac miR-208a and miR-208b and their precursors. We identified four variants in the miR-208a pre-miRNA, which are present at very low frequencies in the general population. Two of these variants (+42G > T and +68G > T) alter a highly conserved nucleotide and the predicted pre-miRNA secondary structure. Both variants result in reduced mature miR-208a levels in overexpression experiments. The variant +42G > T also increased pre-miR-208a levels in these experiments, which indicates a maturation deficiency. Co-transfection of the overexpression constructs with a luciferase construct containing six miRNA binding sites revealed that both variants also impair repression of luciferase expression by miR-208a, indicative of also a loss of miR208a function. Together this indicates that these DCM-associated variants impair formation of mature miR208a. Combined with the role of miR-208a in cardiac contractility this suggests that variants +42G > T and +68G > T in pre-miR-208a may contribute to the DCM phenotype observed in these patients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Human molecular genetics
Human molecular genetics 生物-生化与分子生物学
CiteScore
6.90
自引率
2.90%
发文量
294
审稿时长
2-4 weeks
期刊介绍: Human Molecular Genetics concentrates on full-length research papers covering a wide range of topics in all aspects of human molecular genetics. These include: the molecular basis of human genetic disease developmental genetics cancer genetics neurogenetics chromosome and genome structure and function therapy of genetic disease stem cells in human genetic disease and therapy, including the application of iPS cells genome-wide association studies mouse and other models of human diseases functional genomics computational genomics In addition, the journal also publishes research on other model systems for the analysis of genes, especially when there is an obvious relevance to human genetics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信