Improving genetic diagnostic yield in familial and sporadic cerebral cavernous malformations: detection of copy number and deep Intronic variants.

IF 3.1 2区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Neblina Sikta, Samuel Gooley, Timothy E Green, Olivia Hoeper, Tom Witkowski, Caitlin Bennett, David Francis, Joshua Reid, Kevin Mao, Mohammed Awad, Samuel Roberts-Thomson, Kristian Bulluss, Jonathan Clark, Ingrid E Scheffer, Piero Perucca, Mark F Bennett, Melanie Bahlo, Samuel F Berkovic, Michael S Hildebrand
{"title":"Improving genetic diagnostic yield in familial and sporadic cerebral cavernous malformations: detection of copy number and deep Intronic variants.","authors":"Neblina Sikta, Samuel Gooley, Timothy E Green, Olivia Hoeper, Tom Witkowski, Caitlin Bennett, David Francis, Joshua Reid, Kevin Mao, Mohammed Awad, Samuel Roberts-Thomson, Kristian Bulluss, Jonathan Clark, Ingrid E Scheffer, Piero Perucca, Mark F Bennett, Melanie Bahlo, Samuel F Berkovic, Michael S Hildebrand","doi":"10.1093/hmg/ddaf077","DOIUrl":null,"url":null,"abstract":"<p><p>Cerebral cavernous malformations (CCMs) are intracranial vascular lesions associated with risk of haemorrhages and seizures. While the majority are sporadic and often associated with somatic variants in PIK3CA and MAP3K3, around 20% are familial with germline variants in one of three CCM genes-KRIT1/CCM1, CCM2 and PDCD10/CCM3. We performed comprehensive phenotyping and genetic analysis of nine multiplex families and ten sporadic individuals with CCM. In the familial cases, initial standard analyses had a low yield, we therefore searched for small copy number changes and deep intronic variants. Subsequently, pathogenic germline variants in KRIT1/CCM1 or CCM2 were identified in all 9 multiplex families. Single or multiple exon deletions or splice site variants in KRIT1/CCM1 were found in 3/9 families. Where cavernous malformation tissue was available, second hit somatic PIK3CA variants were identified in 4/7 individuals. These 4 individuals were from separate families with germline KRIT1/CCM1 variants. In 8/10 sporadic cases, we detected recurrent pathogenic somatic PIK3CA, MAP3K3 or CCM2 variants. All familial cases had multiple CCMs, whereas the sporadic cases had a single lesion only, which was in the temporal lobe in 9/10 individuals. Our comprehensive approach interrogating deep intronic variants combined with detection of small copy number variants warrants implementation in standard clinical genetic testing pipelines to increase diagnostic yield. We also build on the established second hit germline and somatic variant mechanism in some CCM lesions. Genetic diagnosis has clinical implications such as reproductive counselling and provides potential eligibility for precision medicine therapies to treat rapidly growing CCMs.</p>","PeriodicalId":13070,"journal":{"name":"Human molecular genetics","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human molecular genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/hmg/ddaf077","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cerebral cavernous malformations (CCMs) are intracranial vascular lesions associated with risk of haemorrhages and seizures. While the majority are sporadic and often associated with somatic variants in PIK3CA and MAP3K3, around 20% are familial with germline variants in one of three CCM genes-KRIT1/CCM1, CCM2 and PDCD10/CCM3. We performed comprehensive phenotyping and genetic analysis of nine multiplex families and ten sporadic individuals with CCM. In the familial cases, initial standard analyses had a low yield, we therefore searched for small copy number changes and deep intronic variants. Subsequently, pathogenic germline variants in KRIT1/CCM1 or CCM2 were identified in all 9 multiplex families. Single or multiple exon deletions or splice site variants in KRIT1/CCM1 were found in 3/9 families. Where cavernous malformation tissue was available, second hit somatic PIK3CA variants were identified in 4/7 individuals. These 4 individuals were from separate families with germline KRIT1/CCM1 variants. In 8/10 sporadic cases, we detected recurrent pathogenic somatic PIK3CA, MAP3K3 or CCM2 variants. All familial cases had multiple CCMs, whereas the sporadic cases had a single lesion only, which was in the temporal lobe in 9/10 individuals. Our comprehensive approach interrogating deep intronic variants combined with detection of small copy number variants warrants implementation in standard clinical genetic testing pipelines to increase diagnostic yield. We also build on the established second hit germline and somatic variant mechanism in some CCM lesions. Genetic diagnosis has clinical implications such as reproductive counselling and provides potential eligibility for precision medicine therapies to treat rapidly growing CCMs.

提高家族性和散发性脑海绵体畸形的遗传诊断率:拷贝数和深层内含子变异的检测。
脑海绵状血管瘤(CCMs)是颅内血管病变与出血和癫痫发作的风险。虽然大多数是散发性的,通常与PIK3CA和MAP3K3的体细胞变异有关,但大约20%的CCM基因与krit1 /CCM1、CCM2和PDCD10/CCM3中的一种种系变异是家族性的。我们对9个多重家族和10个散发性CCM个体进行了全面的表型和遗传分析。在家族病例中,最初的标准分析产率低,因此我们寻找小拷贝数变化和深内含子变异。随后,在所有9个多重家族中鉴定了KRIT1/CCM1或CCM2的致病种系变异。KRIT1/CCM1的单外显子或多个外显子缺失或剪接位点变异存在于3/9个家族中。在海绵状畸形组织中,在4/7的个体中发现了第二hit体细胞PIK3CA变体。这4个个体来自不同的家系,具有种系KRIT1/CCM1变异。在8/10的散发病例中,我们检测到复发致病性体细胞PIK3CA、MAP3K3或CCM2变异。所有家族性病例都有多个CCMs,而散发病例只有一个病变,9/10的个体在颞叶。我们的综合方法询问深度内含子变异结合检测小拷贝数变异值得在标准临床基因检测管道中实施,以提高诊断产量。我们还建立了在一些CCM病变中建立的第二击种系和体细胞变异机制。遗传诊断具有临床意义,如生殖咨询,并提供潜在的精确医学治疗资格,以治疗快速增长的ccm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Human molecular genetics
Human molecular genetics 生物-生化与分子生物学
CiteScore
6.90
自引率
2.90%
发文量
294
审稿时长
2-4 weeks
期刊介绍: Human Molecular Genetics concentrates on full-length research papers covering a wide range of topics in all aspects of human molecular genetics. These include: the molecular basis of human genetic disease developmental genetics cancer genetics neurogenetics chromosome and genome structure and function therapy of genetic disease stem cells in human genetic disease and therapy, including the application of iPS cells genome-wide association studies mouse and other models of human diseases functional genomics computational genomics In addition, the journal also publishes research on other model systems for the analysis of genes, especially when there is an obvious relevance to human genetics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信