IEEE Transactions on Green Communications and Networking最新文献

筛选
英文 中文
On the Secrecy Rate of In-Band Full-Duplex Two-Way Wiretap Channel 关于带内全双工双向窃听信道的保密率
IF 5.3 2区 计算机科学
IEEE Transactions on Green Communications and Networking Pub Date : 2024-02-22 DOI: 10.1109/TGCN.2024.3368657
Navneet Garg;Haifeng Luo;Tharmalingam Ratnarajah
{"title":"On the Secrecy Rate of In-Band Full-Duplex Two-Way Wiretap Channel","authors":"Navneet Garg;Haifeng Luo;Tharmalingam Ratnarajah","doi":"10.1109/TGCN.2024.3368657","DOIUrl":"10.1109/TGCN.2024.3368657","url":null,"abstract":"In this paper, we consider a two-way wiretap Multi-Input Multi-Output Multi-antenna Eve (MIMOME) channel, where both nodes (Alice and Bob) transmit and receive in an in-band full-duplex (IBFD) manner. For this system with keyless security, we provide a novel artificial noise (AN) based signal design, where the AN is injected in both signal and null spaces. We present an ergodic secrecy rate approximation to derive the power allocation algorithm. We consider scenarios where AN is known and unknown to legitimate users and include imperfect channel information effects. To maximize secrecy rates subject to the transmit power constraint, a two-step power allocation solution is proposed, where the first step is known at Eve, and the second step helps to improve the secrecy further. We also consider scenarios where partial information is known by Eve and the effects of non-ideal self-interference cancellation. The usefulness and limitations of the resulting power allocation solution are analyzed and verified via simulations. Results show that secrecy rates are less when AN is unknown to receivers or Eve has more information about legitimate users. Since the ergodic approximation only considers Eve’s distance, the resulting power allocation provides secrecy rates close to the actual ones.","PeriodicalId":13052,"journal":{"name":"IEEE Transactions on Green Communications and Networking","volume":"8 4","pages":"1348-1360"},"PeriodicalIF":5.3,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140251999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aerial IRS-Assisted Secure SWIPT System With UAV Jitter 具有无人机抖动功能的空中 IRS 辅助安全 SWIPT 系统
IF 5.3 2区 计算机科学
IEEE Transactions on Green Communications and Networking Pub Date : 2024-02-16 DOI: 10.1109/TGCN.2024.3366539
Tianhao Cheng;Buhong Wang;Kunrui Cao;Beixiong Zheng;Jiwei Tian;Runze Dong;Danyu Diao;Jingyu Chen
{"title":"Aerial IRS-Assisted Secure SWIPT System With UAV Jitter","authors":"Tianhao Cheng;Buhong Wang;Kunrui Cao;Beixiong Zheng;Jiwei Tian;Runze Dong;Danyu Diao;Jingyu Chen","doi":"10.1109/TGCN.2024.3366539","DOIUrl":"https://doi.org/10.1109/TGCN.2024.3366539","url":null,"abstract":"Intelligent reflecting surface (IRS)-assisted wireless communication has been recognized as an important way to enhance the security of unmanned aerial vehicle (UAV) networks. However, a single IRS may be unable to meet the transmission requirements in complex communication scenarios. In particular, due to the inherent instability of UAV platforms, the inevitable jitter caused by airflow and body vibration can have a great impact on transmission quality. In this paper, we study the multi-aerial IRS (AIRS) assisted secure simultaneous wireless information and power transfer (SWIPT) system with UAV jitter taken into account. For the purpose of exposition, two IRSs are deployed on two UAVs to reflect signals transmitted from the base station to an information user and an energy user; meanwhile an eavesdropper intends to eavesdrop on their messages. Angle estimation errors due to UAV jitter is transformed into the bounded channel state information (CSI) errors by applying linear approximations, and a joint optimization problem of the beamforming vector, AIRS phase shift matrices, and UAV trajectories is formulated to maximize the average secrecy rate (ASR). Since the problem is non-convex and the variables are strongly coupled, we propose an alternating optimization (AO) algorithm to deal with it. We decompose it into three sub-problems and adopt the Schur Complement, General S-Procedure, penalty dual decomposition (PDD), and successive convex approximation (SCA) methods to solve these non-convex sub-problems successfully. Numerical results show that UAV jitter could lead to system performance loss and demonstrate the performance gains of our proposed robust algorithm over other benchmark schemes.","PeriodicalId":13052,"journal":{"name":"IEEE Transactions on Green Communications and Networking","volume":"8 4","pages":"1530-1544"},"PeriodicalIF":5.3,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142672049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Imperceptible Visible Light Communications Based on Modified Just Imperceptible Difference and Aided by Deep Neural Network 基于修正的公正可感知差分和深度神经网络辅助的可感知可见光通信
IF 5.3 2区 计算机科学
IEEE Transactions on Green Communications and Networking Pub Date : 2024-02-14 DOI: 10.1109/TGCN.2024.3362790
Hanyang Shi;Xuefen Chi;Yan Zhao;Linlin Zhao;Feng Shu;Jiangzhou Wang
{"title":"Imperceptible Visible Light Communications Based on Modified Just Imperceptible Difference and Aided by Deep Neural Network","authors":"Hanyang Shi;Xuefen Chi;Yan Zhao;Linlin Zhao;Feng Shu;Jiangzhou Wang","doi":"10.1109/TGCN.2024.3362790","DOIUrl":"https://doi.org/10.1109/TGCN.2024.3362790","url":null,"abstract":"Indoor visible light communications (VLCs) are not supported in lighting restricted scenarios such as theater, cinema, dim sickroom or bedroom. Thus, different from radio frequency (RF) based communication technologies, such as WiFi, VLC is not “always on”. The “always on” VLC named imperceptible VLC (iVLC) has been proposed, where human cannot perceive glaring nor flicker during the communications. The flicker problem can be solved by increasing the light pulse frequency. In this paper, we propose a two-dimensional characteristic channel analysis structure by considering the different features of communication and light perception channels in iVLC system. The modified just imperceptible difference (JID) has been derived. Based on the modified JID, the upper bounds of average optical power are derived in both direct and reflected light perception scenarios. To reduce the impacts of indoor multiple reflection channel interference and light-emitting diodes (LEDs) transient behaviour in iVLC system where communication signals are modulated in ultra-short pulses, we propose the multi-quadric kernel and deep neural network (DNN) based hard-max pulse position classifier (MQK-DNN-HPPC). Numerical results show that the bit error rate (BER) and synchronization performances of iVLC system are improved by applying MQK-DNN-HPPC compared with the soft-max based DNN algorithm and traditional detection algorithm.","PeriodicalId":13052,"journal":{"name":"IEEE Transactions on Green Communications and Networking","volume":"8 3","pages":"1273-1288"},"PeriodicalIF":5.3,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142123061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Secrecy Performance Analysis of RIS Assisted Ambient Backscatter Communication Networks RIS 辅助环境反向散射通信网络的保密性能分析
IF 5.3 2区 计算机科学
IEEE Transactions on Green Communications and Networking Pub Date : 2024-02-13 DOI: 10.1109/TGCN.2024.3365692
Yingjie Pei;Xinwei Yue;Chongwen Huang;Zhiping Lu
{"title":"Secrecy Performance Analysis of RIS Assisted Ambient Backscatter Communication Networks","authors":"Yingjie Pei;Xinwei Yue;Chongwen Huang;Zhiping Lu","doi":"10.1109/TGCN.2024.3365692","DOIUrl":"10.1109/TGCN.2024.3365692","url":null,"abstract":"Reconfigurable intelligent surface (RIS) and ambient backscatter communication (AmBC) have been envisioned as two promising technologies due to their high transmission reliability as well as energy-efficiency. This paper investigates the secrecy performance of RIS assisted AmBC networks. New closed-form and asymptotic expressions of secrecy outage probability for RIS-AmBC networks are derived by taking into account both imperfect successive interference cancellation (ipSIC) and perfect SIC (pSIC) cases. On top of these, the secrecy diversity order of legitimate user is obtained in high signal-to-noise ratio region, which equals zero and is proportional to the number of RIS elements for ipSIC and pSIC, respectively. The secrecy throughput and energy efficiency are further surveyed to evaluate the secure effectiveness of RIS-AmBC networks. Numerical results are provided to verify the accuracy of theoretical analyses and manifest that: i) The secrecy outage behavior of RIS-AmBC networks exceeds that of conventional AmBC networks; ii) Due to the mutual interference between direct and backscattering links, the number of RIS elements has an optimal value to minimise the secrecy system outage probability; and iii) Secrecy throughput and energy efficiency are strongly influenced by the reflecting coefficient and eavesdropper’s wiretapping ability.","PeriodicalId":13052,"journal":{"name":"IEEE Transactions on Green Communications and Networking","volume":"8 3","pages":"1222-1232"},"PeriodicalIF":5.3,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140235132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RBEER: Rule-Based Energy-Efficient Routing Protocol for Large-Scale UWSNs RBEER:基于规则的大型 UWSN 节能路由协议
IF 5.3 2区 计算机科学
IEEE Transactions on Green Communications and Networking Pub Date : 2024-02-12 DOI: 10.1109/TGCN.2024.3364776
A. S. Ismail;Ammar Hawbani;Xingfu Wang;Samah Abdel Aziz;Saeed Hamood Alsamhi;Liang Zhao;Ahmed Fathalla
{"title":"RBEER: Rule-Based Energy-Efficient Routing Protocol for Large-Scale UWSNs","authors":"A. S. Ismail;Ammar Hawbani;Xingfu Wang;Samah Abdel Aziz;Saeed Hamood Alsamhi;Liang Zhao;Ahmed Fathalla","doi":"10.1109/TGCN.2024.3364776","DOIUrl":"https://doi.org/10.1109/TGCN.2024.3364776","url":null,"abstract":"Recently, underwater wireless sensor networks (UWSNs) have seen increasing popularity owing to their extensive applications in aquatic environments, including monitoring underwater pipelines, detecting pollution and disasters, researching marine life, underwater surveillance, and facilitating military surveillance. In fact, the task of devising an adequate routing algorithm is particularly challenging because of the unique underwater environmental conditions. These challenges include energy constraints, dynamic topology, long propagation delays, bandwidth limitations, mobility, and 3-D deployments. Therefore, this study addresses the aforementioned challenges and proposes RBEER, a rule-based energy-efficient routing protocol for large-scale UWSNs. RBEER works in three steps: the first is the network initialization and network clustering, in which a Fuzzy C-means is utilized to perform the clustering and determine the cluster centers. The second step is using the RISE rule-based classifier to select the optimal cluster head (CH) based on five input parameters to generate the set of rules. The last step is data forwarding, in which data is forwarded through a single-hop intra-cluster path from member nodes to CH nodes, then through a multi-hop inter-cluster path from CH nodes to sink nodes. Extensive simulations and experiments have been conducted to evaluate the performance of the RBEER protocol. The results demonstrate that the RBEER protocol outperforms benchmarks regarding packet delivery ratio, end-to-end delay, and energy consumption.","PeriodicalId":13052,"journal":{"name":"IEEE Transactions on Green Communications and Networking","volume":"8 3","pages":"1168-1181"},"PeriodicalIF":5.3,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142090831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Communications Society Information IEEE 通信学会信息
IF 4.8 2区 计算机科学
IEEE Transactions on Green Communications and Networking Pub Date : 2024-02-09 DOI: 10.1109/TGCN.2024.3360673
{"title":"IEEE Communications Society Information","authors":"","doi":"10.1109/TGCN.2024.3360673","DOIUrl":"https://doi.org/10.1109/TGCN.2024.3360673","url":null,"abstract":"","PeriodicalId":13052,"journal":{"name":"IEEE Transactions on Green Communications and Networking","volume":"8 1","pages":"C3-C3"},"PeriodicalIF":4.8,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10430463","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139715123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on Green Communications and Networking 电气和电子工程师学会绿色通信与网络论文集
IF 4.8 2区 计算机科学
IEEE Transactions on Green Communications and Networking Pub Date : 2024-02-09 DOI: 10.1109/TGCN.2024.3360671
{"title":"IEEE Transactions on Green Communications and Networking","authors":"","doi":"10.1109/TGCN.2024.3360671","DOIUrl":"https://doi.org/10.1109/TGCN.2024.3360671","url":null,"abstract":"","PeriodicalId":13052,"journal":{"name":"IEEE Transactions on Green Communications and Networking","volume":"8 1","pages":"C2-C2"},"PeriodicalIF":4.8,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10430479","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139715234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reconfigurable Intelligent Surface-Assisted Multi-User Secrecy Transmission With Low-Resolution DACs 利用低分辨率 DAC 实现可重构智能表面辅助多用户保密传输
IF 5.3 2区 计算机科学
IEEE Transactions on Green Communications and Networking Pub Date : 2024-02-06 DOI: 10.1109/TGCN.2024.3362866
Kexin Li;Huiqin Du;Si Li
{"title":"Reconfigurable Intelligent Surface-Assisted Multi-User Secrecy Transmission With Low-Resolution DACs","authors":"Kexin Li;Huiqin Du;Si Li","doi":"10.1109/TGCN.2024.3362866","DOIUrl":"https://doi.org/10.1109/TGCN.2024.3362866","url":null,"abstract":"This paper considers a reconfigurable intelligent surface (RIS)-assisted multi-user secrecy transmission in the presence of low-resolution digital-to-analog converters (DACs) at a small-cell base station (SBS). The weighted sum secrecy rate (WSSR) is maximized by jointly designing the active beamforming and RIS reflecting phase shift subject to the transmit power and the phase unit-modulus constraints. However, the problem involves two sum-of-logarithms and highly coupled optimization variables. To tackle the non-convex fractional programming problem with multiple ratios, we employ a lower linearization approach for logarithm subtraction and decompose the problem into two quadratically constrained quadratic programming subproblems. The optimum active beamforming is determined using a semi-definite relaxation method, and the a closed-form solution of RIS phase shift matrix is derived through the alternating direction method of multiplier. Moreover, considering practical finite-capacity backhaul link, we develop the user scheduling strategy using the power of transmit beamforming as a discrete indicator and formulate the user scheduling as a mixed-integer constraint. The joint optimization of user scheduling and WSSR is investigated by maximizing the network utility with a \u0000<inline-formula> <tex-math>$ell _{1}$ </tex-math></inline-formula>\u0000-norm constraint. Simulation results demonstrate the effectiveness of the proposed algorithm in achieving significant WSSR performance even in the presence of low-resolution DACs. Furthermore, these results show that the joint optimization of WSSR and user scheduling can maximize the network utility by selecting the activated subset of served users.","PeriodicalId":13052,"journal":{"name":"IEEE Transactions on Green Communications and Networking","volume":"8 3","pages":"1205-1221"},"PeriodicalIF":5.3,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142123041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On Wireless Charging for Mobile Sensors 关于移动传感器的无线充电
IF 5.3 2区 计算机科学
IEEE Transactions on Green Communications and Networking Pub Date : 2024-01-31 DOI: 10.1109/TGCN.2024.3360472
Rihito Tsuchida;Kazuya Sakai;Min-Te Sun;Wei-Shinn Ku
{"title":"On Wireless Charging for Mobile Sensors","authors":"Rihito Tsuchida;Kazuya Sakai;Min-Te Sun;Wei-Shinn Ku","doi":"10.1109/TGCN.2024.3360472","DOIUrl":"https://doi.org/10.1109/TGCN.2024.3360472","url":null,"abstract":"Battery-powered sensor devices have been an essential component in Internet of Things (IoT) applications. Much effort has been devoted to designing algorithms that identify efficient routes for a mobile wireless charger to feed sensor devices with energy without plugs, in which power is wirelessely transferred from the charger to sensors. However, existing studies assume static sensors. In this paper, we address the problem of finding better mobile charger trajectories for mobile sensors, where sensor devices are assumed to be mobile. We first introduce two problems. One is the MaxAC problem that maximizes the amount of charge from a charger to sensors within a given time constraint; the other is the MinCD problem that minimizes the charging delay to provide all the sensors with at least a target power level. To this end, we design the charging utility prediction model to estimate how much power can be transferred during a given time interval. Then, two trajectory planning algorithms are proposed, namely TPA-MaxAC and TPA-MinCD, for each problem. The simulation results demonstrate that the proposed algorithms outperform a baseline algorithm as well as the state-of-the-art wireless charging algorithms.","PeriodicalId":13052,"journal":{"name":"IEEE Transactions on Green Communications and Networking","volume":"8 3","pages":"1156-1167"},"PeriodicalIF":5.3,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142090993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Distributed Learning Algorithm for Power Control in Energy Efficient IRS Assisted SISO NOMA Networks 节能 IRS 辅助 SISO NOMA 网络中功率控制的分布式学习算法
IF 5.3 2区 计算机科学
IEEE Transactions on Green Communications and Networking Pub Date : 2024-01-30 DOI: 10.1109/TGCN.2024.3360079
Susan Dominic;Lillykutty Jacob
{"title":"A Distributed Learning Algorithm for Power Control in Energy Efficient IRS Assisted SISO NOMA Networks","authors":"Susan Dominic;Lillykutty Jacob","doi":"10.1109/TGCN.2024.3360079","DOIUrl":"https://doi.org/10.1109/TGCN.2024.3360079","url":null,"abstract":"This paper proposes a novel framework for energy efficiency maximization in an intelligent reflecting surface (IRS) aided single-input, single-output (SISO) non-orthogonal multiple access (NOMA) network through distributed learning based power control. A two-timescale based algorithm is presented to jointly optimize the transmit power of the user equipments (UEs) and reflection coefficients of the IRS elements, while ensuring a minimum rate of transmission for the users. The joint optimization problem is solved at two levels by employing two learning algorithms where the action choice updations in the learning algorithms are performed at two different timescales. The base station (BS) assists the IRS to learn its reflection coefficient matrix. The problem is formulated as an exact potential game with common payoffs and a stochastic learning algorithm (SLA) is proposed. During each iteration of SLA, corresponding to a particular reflection coefficient matrix of the IRS, the UEs learn the minimum transmit power required to satisfy their SINR requirements by employing a distributed learning for pareto optimality (DLPO) algorithm. The proposed learning algorithms are fully distributed since the UEs and the BS need to know only their own utilities and need not have the global channel state information (CSI).","PeriodicalId":13052,"journal":{"name":"IEEE Transactions on Green Communications and Networking","volume":"8 3","pages":"1196-1204"},"PeriodicalIF":5.3,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142123030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信