Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation最新文献

筛选
英文 中文
The GKR Protocol Revisited: Nearly Optimal Prover-Complexity for Polynomial-Time Wiring Algorithms and for Primality Testing in n1/2+o(1) Rounds 重新审视GKR协议:多项式时间连线算法和n /2+o(1)轮素数检验的近最优证明复杂度
E. Kaltofen
{"title":"The GKR Protocol Revisited: Nearly Optimal Prover-Complexity for Polynomial-Time Wiring Algorithms and for Primality Testing in n1/2+o(1) Rounds","authors":"E. Kaltofen","doi":"10.1145/3476446.3536183","DOIUrl":"https://doi.org/10.1145/3476446.3536183","url":null,"abstract":"The proof-of-work interactive protocol by Shafi Goldwasser, Yael T. Kalai and Guy N. Rothblum (GKR) [STOC 2008, JACM 2015] certifies the execution of an algorithm via the evaluation of a corresponding boolean or arithmetic circuit whose structure is known to the verifier by circuit wiring algorithms that define the uniformity of the circuit. Here we study protocols whose prover time- and space-complexities are within a poly-logarithmic factor of the time- and space-complexity of the algorithm; we call those protocols 'prover-nearly-optimal.' We show that the uniformity assumptions can be relaxed from LOGSPACE to polynomial-time in the bit-lengths of the labels which enumerate the nodes in the circuit. Our protocol applies GKR recursively to the arising sumcheck problems on each level of the circuit whose values are verified, and deploys any of the prover-nearly-optimal versions of GKR on the constructed sorting/prefix circuits with log-depth wiring functions. The verifier time-complexity of GKR grows linearly in the depth of the circuit. For deep circuits such as the Miller-Rabin integer primality test of an n-bit integer, the large number of rounds may interfere with soundness guarantees after the application of the Fiat-Shamir heuristic. We re-arrange the circuit evaluation problem by the baby-steps/giant-steps method to achieve a depth of n1/2+o(1), at prover cost n2+o(1) bit complexity and communication and verifier cost n3/2+o(1).","PeriodicalId":130499,"journal":{"name":"Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130822686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simple C2-finite Sequences: a Computable Generalization of C-finite Sequences 简单c2 -有限序列:c -有限序列的可计算推广
P. Nuspl, V. Pillwein
{"title":"Simple C2-finite Sequences: a Computable Generalization of C-finite Sequences","authors":"P. Nuspl, V. Pillwein","doi":"10.1145/3476446.3536174","DOIUrl":"https://doi.org/10.1145/3476446.3536174","url":null,"abstract":"A sequence is called C-finite, if it satisfies a linear recurrence with constant coefficients and holonomic, if it satisfies a linear recurrence with polynomial coefficients. The class of C2-finite sequences is a natural generalization of holonomic sequences and consists of sequences satisfying a linear recurrence with C-finite coefficients whose leading coefficient has no zero terms. Recently, we investigated computational properties of $C^2$-finite sequences: we showed that these sequences form a difference ring and provided methods to compute in this ring. From an algorithmic point of view, some of these results were not as far reaching as we hoped for. In this paper, we define the class of simple C2-finite sequences and show that it satisfies the same computational properties, but does not share the same technical issues. In particular, we are able to derive bounds for the asymptotic behavior, can compute closure properties more efficiently, and have a characterization via the generating function.","PeriodicalId":130499,"journal":{"name":"Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121178501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Bounding the Number of Roots of Multi-Homogeneous Systems 多齐次系统的根数边界
Evangelos Bartzos, I. Emiris, I. Kotsireas, C. Tzamos
{"title":"Bounding the Number of Roots of Multi-Homogeneous Systems","authors":"Evangelos Bartzos, I. Emiris, I. Kotsireas, C. Tzamos","doi":"10.1145/3476446.3536189","DOIUrl":"https://doi.org/10.1145/3476446.3536189","url":null,"abstract":"Determining the number of solutions of a multi-homogeneous polynomial system is a fundamental problem in algebraic geometry. The multi-homogeneous Bézout (m-Bézout) number bounds from above the number of non-singular solutions of a multi-homogeneous system, but its computation is a #P>-hard problem. Recent work related the m-Bézout number of certain multi-homogeneous systems derived from rigidity theory with graph orientations, cf Bartzos et al. (2020). A first generalization applied graph orientations for bounding the root count of a multi-homogeneous system that can be modeled by simple undirected graphs, as shown by three of the authors (Bartzos et al., 2021). Here, we prove that every multi-homogeneous system can be modeled by hypergraphs and the computation of its m-Bézout bound is related to constrained hypergraph orientations. Thus, we convert the algebraic problem of bounding the number of roots of a polynomial system to a purely combinatorial problem of analyzing the structure of a hypergraph. We also provide a formulation of the orientation problem as a constraint satisfaction problem (CSP), hence leading to an algorithm that computes the multi-homogeneous bound by finding constrained hypergraph orientations.","PeriodicalId":130499,"journal":{"name":"Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation","volume":"43 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125508951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computing a Basis for an Integer Lattice: A Special Case 计算整数格的基:一种特殊情况
Haomin Li, A. Storjohann
{"title":"Computing a Basis for an Integer Lattice: A Special Case","authors":"Haomin Li, A. Storjohann","doi":"10.1145/3476446.3536184","DOIUrl":"https://doi.org/10.1145/3476446.3536184","url":null,"abstract":"Consider an integer matrix A ε Znx(n-1) that has full column rank n-1. The set of all Z-linear combinations of the rows of A generates a lattice, denoted by L(A).","PeriodicalId":130499,"journal":{"name":"Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation","volume":"125 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116261691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modular Techniques for Intermediate Primary Decomposition 中间初等分解的模块化技术
Yuki Ishihara
{"title":"Modular Techniques for Intermediate Primary Decomposition","authors":"Yuki Ishihara","doi":"10.1145/3476446.3535488","DOIUrl":"https://doi.org/10.1145/3476446.3535488","url":null,"abstract":"In Commutative Algebra and Algebraic Geometry, ''Primary decomposition'' is well-known as a fundamental and important tool. Although algorithms for primary decomposition have been studied by many researchers, the development of fast algorithms still remains a challenging problem. In this paper, we devise an algorithm for ''Strong Intermediate Primary Decomposition\" via maximal independent sets by using modular techniques. In the algorithm, we utilize double ideal quotients to check whether a candidate from modular computations is an intersection of prime divisors or not. As an application, we can compute the set of associated prime divisors from the strong intermediate prime decomposition. In a naive computational experiment, we see the effectiveness of our methods.","PeriodicalId":130499,"journal":{"name":"Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121849904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Non-commutative Optimization - Where Algebra, Analysis and Computational Complexity Meet 非交换优化-代数,分析和计算复杂性相遇
A. Wigderson
{"title":"Non-commutative Optimization - Where Algebra, Analysis and Computational Complexity Meet","authors":"A. Wigderson","doi":"10.1145/3476446.3535489","DOIUrl":"https://doi.org/10.1145/3476446.3535489","url":null,"abstract":"We briefly describe a flurry of recent activity in the interaction between the theory of computation and several mathematical areas, that has led to many applications on both sides. The core results are mainly new algorithms for basic problems in invariant theory, arising from computational questions in algebraic complexity theory. However, as understanding evolved, connections were revealed to many other mathematical disciplines, as well as to optimization theory. In particular, the most basic tools of convex optimization in Euclidean space extend to a far more general geodesic setting of Riemannian manifolds that arise from the symmetries of non-commutative groups. This paper extends a section in my book, Mathematics and Computation [54] devoted to an accessible exposition of the theory of computation. Besides covering many of the different parts of this theory, the book discusses its connections with many different areas of mathematics, and many of the sciences.","PeriodicalId":130499,"journal":{"name":"Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126122438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Property of Modules Over a Polynomial Ring With an Application in Multivariate Polynomial Matrix Factorizations 多项式环上模的一个性质及其在多元多项式矩阵分解中的应用
Dong Lu, Dingkang Wang, Fanghui Xiao, Xiaopeng Zheng
{"title":"A Property of Modules Over a Polynomial Ring With an Application in Multivariate Polynomial Matrix Factorizations","authors":"Dong Lu, Dingkang Wang, Fanghui Xiao, Xiaopeng Zheng","doi":"10.1145/3476446.3535470","DOIUrl":"https://doi.org/10.1145/3476446.3535470","url":null,"abstract":"This paper is concerned with a property of modules over a polynomial ring and its application in multivariate polynomial matrix factorizations. We construct a specific polynomial such that the product of the polynomial and a nonzero vector in a module over a polynomial ring can be represented by the elements in a maximum linearly independent vector set of the module over the polynomial ring. Based on this property, a relationship between a rank-deficient matrix and any of its full row rank submatrices is presented. By this result, we show that the problem for general factorizations of rank-deficient matrices can be translated into that of any of their full row rank submatrices in the regular case. Then many results on factorizations of full row rank matrices, such as zero prime factorizations, minor prime factorizations and factor prime factorizations, can be extended to the rank-deficient case. We implement the algorithm of general factorizations for rank-deficient matrices on the computer algebra system Maple, and two examples are given to illustrate the algorithm.","PeriodicalId":130499,"journal":{"name":"Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation","volume":"55 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133462605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Finer Complexity Estimates for the Change of Ordering of Gröbner Bases for Generic Symmetric Determinantal Ideals 广义对称行列式理想Gröbner基序变化的精细复杂性估计
A. Ferguson, H. P. Le
{"title":"Finer Complexity Estimates for the Change of Ordering of Gröbner Bases for Generic Symmetric Determinantal Ideals","authors":"A. Ferguson, H. P. Le","doi":"10.1145/3476446.3536182","DOIUrl":"https://doi.org/10.1145/3476446.3536182","url":null,"abstract":"Polynomial matrices and ideals generated by their minors appear in various domains such as cryptography, polynomial optimization and effective algebraic geometry. When the given matrix is symmetric, this additional structure on top of the determinantal structure, affects computations on the derived ideals. Thus, understanding the complexity of these computations is important. Moreover, this study serves as a stepping stone towards further understanding the effects of structure in determinantal systems, such as those coming from moment matrices. In this paper, we focus on the Sparse-FGLM algorithm, the state-of-the-art for changing ordering of Gröbner bases of zero-dimensional ideals. Under a variant of Fröberg's conjecture, we study its complexity for symmetric determinantal ideals and identify the gain of exploiting sparsity in the Sparse-FGLM algorithm compared with the classical FGLM algorithm. For an n×n symmetric matrix with polynomial entries of degree d, we show that the complexity of Sparse-FGLM for zero-dimensional determinantal ideals obtained from this matrix over that of the FGLM algorithm is at least O(1/d). Moreover, for some specific sizes of minors, we prove finer results of at least O(1/nd) and O(1/m3d).","PeriodicalId":130499,"journal":{"name":"Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation","volume":" 36","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114060703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Rado Numbers and SAT Computations 无线电数字和SAT计算
Yuan Chang, J. D. Loera, W. J. Wesley
{"title":"Rado Numbers and SAT Computations","authors":"Yuan Chang, J. D. Loera, W. J. Wesley","doi":"10.1145/3476446.3535494","DOIUrl":"https://doi.org/10.1145/3476446.3535494","url":null,"abstract":"Given a linear equation E, the k-color Rado number Rk(E) is the smallest integer n such that every k-coloring of {1,2,3,...,n} contains a monochromatic solution to E. The degree of regularity of E, denoted dor(E), is the largest value k such that Rk(E) is finite. In this article we present new theoretical and computational results about the Rado numbers R3(E) and the degree of regularity of three-variable equations E.","PeriodicalId":130499,"journal":{"name":"Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation","volume":"1088 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123339305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Rational Univariate Representation of Zero-Dimensional Ideals with Parameters 带参数的零维理想的有理单变量表示
Dingkang Wang, Jingjing Wei, Fanghui Xiao, Xiaopeng Zheng
{"title":"Rational Univariate Representation of Zero-Dimensional Ideals with Parameters","authors":"Dingkang Wang, Jingjing Wei, Fanghui Xiao, Xiaopeng Zheng","doi":"10.1145/3476446.3535496","DOIUrl":"https://doi.org/10.1145/3476446.3535496","url":null,"abstract":"An algorithm for computing the rational univariate representation of zero-dimensional ideals with parameters is presented in the paper. Different from the rational univariate representation of zero-dimensional ideals without parameters, the number of zeros of zero-dimensional ideals with parameters under various specializations is different, which leads to choosing and checking the separating element, the key to computing the rational univariate representation, is difficult. In order to pick out the separating element, by partitioning the parameter space we can ensure that under each branch the ideal has the same number of zeros. Subsequently based on the extended subresultant theorem for parametric cases, the separating element corresponding to each branch is chosen with the further partition of parameter space. Finally, with the help of parametric greatest common divisor theory a finite set of the rational univariate representation of zero-dimensional ideals with parameters can be obtained.","PeriodicalId":130499,"journal":{"name":"Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130565716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信