中间初等分解的模块化技术

Yuki Ishihara
{"title":"中间初等分解的模块化技术","authors":"Yuki Ishihara","doi":"10.1145/3476446.3535488","DOIUrl":null,"url":null,"abstract":"In Commutative Algebra and Algebraic Geometry, ''Primary decomposition'' is well-known as a fundamental and important tool. Although algorithms for primary decomposition have been studied by many researchers, the development of fast algorithms still remains a challenging problem. In this paper, we devise an algorithm for ''Strong Intermediate Primary Decomposition\" via maximal independent sets by using modular techniques. In the algorithm, we utilize double ideal quotients to check whether a candidate from modular computations is an intersection of prime divisors or not. As an application, we can compute the set of associated prime divisors from the strong intermediate prime decomposition. In a naive computational experiment, we see the effectiveness of our methods.","PeriodicalId":130499,"journal":{"name":"Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modular Techniques for Intermediate Primary Decomposition\",\"authors\":\"Yuki Ishihara\",\"doi\":\"10.1145/3476446.3535488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In Commutative Algebra and Algebraic Geometry, ''Primary decomposition'' is well-known as a fundamental and important tool. Although algorithms for primary decomposition have been studied by many researchers, the development of fast algorithms still remains a challenging problem. In this paper, we devise an algorithm for ''Strong Intermediate Primary Decomposition\\\" via maximal independent sets by using modular techniques. In the algorithm, we utilize double ideal quotients to check whether a candidate from modular computations is an intersection of prime divisors or not. As an application, we can compute the set of associated prime divisors from the strong intermediate prime decomposition. In a naive computational experiment, we see the effectiveness of our methods.\",\"PeriodicalId\":130499,\"journal\":{\"name\":\"Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3476446.3535488\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3476446.3535488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在交换代数和代数几何中,“初等分解”是众所周知的基本和重要的工具。虽然许多研究者已经对初等分解算法进行了研究,但快速算法的开发仍然是一个具有挑战性的问题。本文利用模技术设计了一种基于极大独立集的“强中间初等分解”算法。在该算法中,我们利用二重理想商来检验从模计算中得到的候选项是否为质因数的交集。作为一个应用,我们可以从强中间素数分解中计算出相关联的素数因子集。在一个简单的计算实验中,我们看到了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modular Techniques for Intermediate Primary Decomposition
In Commutative Algebra and Algebraic Geometry, ''Primary decomposition'' is well-known as a fundamental and important tool. Although algorithms for primary decomposition have been studied by many researchers, the development of fast algorithms still remains a challenging problem. In this paper, we devise an algorithm for ''Strong Intermediate Primary Decomposition" via maximal independent sets by using modular techniques. In the algorithm, we utilize double ideal quotients to check whether a candidate from modular computations is an intersection of prime divisors or not. As an application, we can compute the set of associated prime divisors from the strong intermediate prime decomposition. In a naive computational experiment, we see the effectiveness of our methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信