The GKR Protocol Revisited: Nearly Optimal Prover-Complexity for Polynomial-Time Wiring Algorithms and for Primality Testing in n1/2+o(1) Rounds

E. Kaltofen
{"title":"The GKR Protocol Revisited: Nearly Optimal Prover-Complexity for Polynomial-Time Wiring Algorithms and for Primality Testing in n1/2+o(1) Rounds","authors":"E. Kaltofen","doi":"10.1145/3476446.3536183","DOIUrl":null,"url":null,"abstract":"The proof-of-work interactive protocol by Shafi Goldwasser, Yael T. Kalai and Guy N. Rothblum (GKR) [STOC 2008, JACM 2015] certifies the execution of an algorithm via the evaluation of a corresponding boolean or arithmetic circuit whose structure is known to the verifier by circuit wiring algorithms that define the uniformity of the circuit. Here we study protocols whose prover time- and space-complexities are within a poly-logarithmic factor of the time- and space-complexity of the algorithm; we call those protocols 'prover-nearly-optimal.' We show that the uniformity assumptions can be relaxed from LOGSPACE to polynomial-time in the bit-lengths of the labels which enumerate the nodes in the circuit. Our protocol applies GKR recursively to the arising sumcheck problems on each level of the circuit whose values are verified, and deploys any of the prover-nearly-optimal versions of GKR on the constructed sorting/prefix circuits with log-depth wiring functions. The verifier time-complexity of GKR grows linearly in the depth of the circuit. For deep circuits such as the Miller-Rabin integer primality test of an n-bit integer, the large number of rounds may interfere with soundness guarantees after the application of the Fiat-Shamir heuristic. We re-arrange the circuit evaluation problem by the baby-steps/giant-steps method to achieve a depth of n1/2+o(1), at prover cost n2+o(1) bit complexity and communication and verifier cost n3/2+o(1).","PeriodicalId":130499,"journal":{"name":"Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3476446.3536183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The proof-of-work interactive protocol by Shafi Goldwasser, Yael T. Kalai and Guy N. Rothblum (GKR) [STOC 2008, JACM 2015] certifies the execution of an algorithm via the evaluation of a corresponding boolean or arithmetic circuit whose structure is known to the verifier by circuit wiring algorithms that define the uniformity of the circuit. Here we study protocols whose prover time- and space-complexities are within a poly-logarithmic factor of the time- and space-complexity of the algorithm; we call those protocols 'prover-nearly-optimal.' We show that the uniformity assumptions can be relaxed from LOGSPACE to polynomial-time in the bit-lengths of the labels which enumerate the nodes in the circuit. Our protocol applies GKR recursively to the arising sumcheck problems on each level of the circuit whose values are verified, and deploys any of the prover-nearly-optimal versions of GKR on the constructed sorting/prefix circuits with log-depth wiring functions. The verifier time-complexity of GKR grows linearly in the depth of the circuit. For deep circuits such as the Miller-Rabin integer primality test of an n-bit integer, the large number of rounds may interfere with soundness guarantees after the application of the Fiat-Shamir heuristic. We re-arrange the circuit evaluation problem by the baby-steps/giant-steps method to achieve a depth of n1/2+o(1), at prover cost n2+o(1) bit complexity and communication and verifier cost n3/2+o(1).
重新审视GKR协议:多项式时间连线算法和n /2+o(1)轮素数检验的近最优证明复杂度
Shafi Goldwasser, Yael T. Kalai和Guy N. Rothblum (GKR)的工作量证明交互协议[STOC 2008, JACM 2015]通过对相应布尔或算术电路的评估来证明算法的执行,该电路的结构通过定义电路均匀性的电路布线算法为验证者所知。在这里,我们研究了证明者的时间和空间复杂性在算法的时间和空间复杂性的多对数因子内的协议;我们称这些协议为“已被证明接近最优的”。我们证明了均匀性假设可以在枚举电路中节点的标签的位长度上从LOGSPACE放宽到多项式时间。我们的协议将GKR递归地应用于每一层电路上的sumcheck问题,这些问题的值被验证,并在构造的排序/前缀电路上部署任何证明的近最优版本的GKR,这些电路具有对数深度的布线功能。GKR的验证器时间复杂度随电路深度呈线性增长。对于深度电路,如n位整数的Miller-Rabin整数素数检验,在应用Fiat-Shamir启发式后,大量的轮数可能会干扰可靠性保证。我们用小步/大步法重新安排电路评估问题,使其深度达到n1/2+o(1),证明者代价为n2+o(1)位复杂度,通信和验证者代价为n3/2+o(1)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信