无线电数字和SAT计算

Yuan Chang, J. D. Loera, W. J. Wesley
{"title":"无线电数字和SAT计算","authors":"Yuan Chang, J. D. Loera, W. J. Wesley","doi":"10.1145/3476446.3535494","DOIUrl":null,"url":null,"abstract":"Given a linear equation E, the k-color Rado number Rk(E) is the smallest integer n such that every k-coloring of {1,2,3,...,n} contains a monochromatic solution to E. The degree of regularity of E, denoted dor(E), is the largest value k such that Rk(E) is finite. In this article we present new theoretical and computational results about the Rado numbers R3(E) and the degree of regularity of three-variable equations E.","PeriodicalId":130499,"journal":{"name":"Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation","volume":"1088 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Rado Numbers and SAT Computations\",\"authors\":\"Yuan Chang, J. D. Loera, W. J. Wesley\",\"doi\":\"10.1145/3476446.3535494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a linear equation E, the k-color Rado number Rk(E) is the smallest integer n such that every k-coloring of {1,2,3,...,n} contains a monochromatic solution to E. The degree of regularity of E, denoted dor(E), is the largest value k such that Rk(E) is finite. In this article we present new theoretical and computational results about the Rado numbers R3(E) and the degree of regularity of three-variable equations E.\",\"PeriodicalId\":130499,\"journal\":{\"name\":\"Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation\",\"volume\":\"1088 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3476446.3535494\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3476446.3535494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

给定线性方程E, k色Rado数Rk(E)是最小的整数n,使得{1,2,3,…,n}包含E的一个单色解。E的正则度,记为dor(E),是使得Rk(E)是有限的最大值k。本文给出了关于雷达数R3(E)和三变量方程正则度E的新的理论和计算结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rado Numbers and SAT Computations
Given a linear equation E, the k-color Rado number Rk(E) is the smallest integer n such that every k-coloring of {1,2,3,...,n} contains a monochromatic solution to E. The degree of regularity of E, denoted dor(E), is the largest value k such that Rk(E) is finite. In this article we present new theoretical and computational results about the Rado numbers R3(E) and the degree of regularity of three-variable equations E.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信