IEEE Magnetics Letters最新文献

筛选
英文 中文
Soft Magnetism and Microwave Properties of FeCoSiB Ferromagnetic Alloys Grown on AlN and AlScN Thin Films AlN和AlScN薄膜上生长FeCoSiB铁磁合金的软磁和微波性能
IF 1.1 4区 物理与天体物理
IEEE Magnetics Letters Pub Date : 2025-01-27 DOI: 10.1109/LMAG.2025.3535310
Meng Zhao;Xianfeng Liang;Yuxi Wang;Tao Wu;Jingen Wu;Jinghong Guo;Zhongqiang Hu;Ming Liu
{"title":"Soft Magnetism and Microwave Properties of FeCoSiB Ferromagnetic Alloys Grown on AlN and AlScN Thin Films","authors":"Meng Zhao;Xianfeng Liang;Yuxi Wang;Tao Wu;Jingen Wu;Jinghong Guo;Zhongqiang Hu;Ming Liu","doi":"10.1109/LMAG.2025.3535310","DOIUrl":"https://doi.org/10.1109/LMAG.2025.3535310","url":null,"abstract":"Thin-film magneto-electric composites based on aluminum nitride (AIN) and Sc-doped AlN exhibit great potential for applications in magneto-electric devices. In this letter, we report soft magnetism and microwave properties in FeCoSiB ferromagnetic alloys grown on AlN and AlScN thin films. According to the hysteresis loop, the coercive fields for FeCoSiB/AlN/Mo/Si and FeCoSiB/AlScN/Mo/Si are 43 and 107 Oe, respectively. The influence of interfacial state on magnetic damping is investigated by measuring the magnetic dynamic properties. Scanning electron microscope images show that AlScN film has a larger grain size and rougher surface than that of AlN. The effective magnetization and damping factors are obtained from the ferromagnetic resonance spectroscopy. The damping factor of the magneto-electric heterojunction on AlN/Mo/Si is an order of magnitude higher than that on Si, indicating the interfacial conditions of thin film stacks affect the magnetic dynamic properties. Our findings indicate that the growth quality of piezoelectric materials has a significant impact on magneto-electric films with low-loss tangents at radio-frequency (RF)/microwave frequencies. This work is of practical importance for developing future RF/microwave magneto-electric devices.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"16 ","pages":"1-5"},"PeriodicalIF":1.1,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143489113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Magnetics Letters Information IEEE磁学快报信息
IF 1.1 4区 物理与天体物理
IEEE Magnetics Letters Pub Date : 2025-01-20 DOI: 10.1109/LMAG.2024.3510501
{"title":"IEEE Magnetics Letters Information","authors":"","doi":"10.1109/LMAG.2024.3510501","DOIUrl":"https://doi.org/10.1109/LMAG.2024.3510501","url":null,"abstract":"","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"15 ","pages":"C3-C3"},"PeriodicalIF":1.1,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10847641","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143105725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Néel Relaxation of Magnetic Nanoparticle Clusters 磁性纳米颗粒团簇的nsamel弛豫
IF 1.1 4区 物理与天体物理
IEEE Magnetics Letters Pub Date : 2025-01-20 DOI: 10.1109/LMAG.2025.3531777
Frederik L. Durhuus;Theis H. van Bijlevelt Rix;Maciej A. Głód;Marco Beleggia;Cathrine Frandsen
{"title":"Néel Relaxation of Magnetic Nanoparticle Clusters","authors":"Frederik L. Durhuus;Theis H. van Bijlevelt Rix;Maciej A. Głód;Marco Beleggia;Cathrine Frandsen","doi":"10.1109/LMAG.2025.3531777","DOIUrl":"https://doi.org/10.1109/LMAG.2025.3531777","url":null,"abstract":"Understanding thermal relaxation effects in magnetic nanoparticle (MNP) systems is key to several imaging techniques and clinical applications. Here, we consider the Néel relaxation of compact MNP clusters, using Langevin dynamics simulations to compute the relaxation time as a function of magnetostatic coupling strength. By also analyzing individual thermal reversals, we establish connections between the magnetic structure of a cluster and its Néel relaxation time. In particular, faster relaxation and more exotic behavior are observed for 3-D clusters with several nearly degenerate states, as the magnetization intermittently jumps to metastable states, which can facilitate reversal. Conversely, aggregates with many moments in a single flux-closed loop exhibit fewer metastable states and are efficiently blocked by strong dipole coupling.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"16 ","pages":"1-5"},"PeriodicalIF":1.1,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143512878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Magnetics Society Information IEEE磁学学会信息
IF 1.1 4区 物理与天体物理
IEEE Magnetics Letters Pub Date : 2025-01-20 DOI: 10.1109/LMAG.2024.3510497
{"title":"IEEE Magnetics Society Information","authors":"","doi":"10.1109/LMAG.2024.3510497","DOIUrl":"https://doi.org/10.1109/LMAG.2024.3510497","url":null,"abstract":"","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"15 ","pages":"C2-C2"},"PeriodicalIF":1.1,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10847642","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143105727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
2024 Index IEEE Magnetics Letters Vol. 15 2024索引IEEE Magnetics Letters Vol. 15
IF 1.1 4区 物理与天体物理
IEEE Magnetics Letters Pub Date : 2025-01-17 DOI: 10.1109/LMAG.2025.3529354
{"title":"2024 Index IEEE Magnetics Letters Vol. 15","authors":"","doi":"10.1109/LMAG.2025.3529354","DOIUrl":"https://doi.org/10.1109/LMAG.2025.3529354","url":null,"abstract":"","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"15 ","pages":"9500108-9500108"},"PeriodicalIF":1.1,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10845054","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142992839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancement of Magnon–Photon Coupling Strength: Effect of Spatial Distribution 磁子-光子耦合强度的增强:空间分布效应
IF 1.1 4区 物理与天体物理
IEEE Magnetics Letters Pub Date : 2024-11-13 DOI: 10.1109/LMAG.2024.3497794
Sheetal Yadav;Monika Sharma;Bijoy K. Kuanr
{"title":"Enhancement of Magnon–Photon Coupling Strength: Effect of Spatial Distribution","authors":"Sheetal Yadav;Monika Sharma;Bijoy K. Kuanr","doi":"10.1109/LMAG.2024.3497794","DOIUrl":"https://doi.org/10.1109/LMAG.2024.3497794","url":null,"abstract":"Magnon–photon hybrid systems have potential applications in quantum information processing. The spatial distribution of magnetic field intensity plays a crucial role in enhancing coupling strength. We have investigated strong magnon–photon coupling using a planar waveguide with defects in the ground for dual-frequency ranging from S to C band. Dual inverted split ring resonators were used as a photon resonator, and a yttrium iron garnet (YIG) pellet acted as a magnon source. The interaction between magnon and photon modes was manipulated by variations in the spatial distribution of the magnetic field along the microstrip line. The ferrite sample was placed at three different positions, viz., A, B, and C. The coupling strength \u0000<inline-formula><tex-math>$g$</tex-math></inline-formula>\u0000 was tuned from 188 to 281 MHz by varying YIG locations at different positions along the microstrip line. The spin-number-normalized coupling strength was significantly tuned up to 50% by controlling the position of YIG. Hence, it provides another degree of freedom for the qubit information exchange. The other parameters such as cooperativity and coupling constant were also determined. This work paves the way for developing innovative hybrid systems with tunable high-gain magnon–photon coupling systems in planar geometry.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"15 ","pages":"1-5"},"PeriodicalIF":1.1,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142938554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Controllable Damping Boring Tool Based on Magnetorheological Elastomer 基于磁流变弹性体的可控阻尼镗床
IF 1.1 4区 物理与天体物理
IEEE Magnetics Letters Pub Date : 2024-11-01 DOI: 10.1109/LMAG.2024.3490385
Xuhui Liu;Bin Wan;Bin Xu;Jing Qi;Xingyu He;Zheng Zhou;Yan Wu
{"title":"Controllable Damping Boring Tool Based on Magnetorheological Elastomer","authors":"Xuhui Liu;Bin Wan;Bin Xu;Jing Qi;Xingyu He;Zheng Zhou;Yan Wu","doi":"10.1109/LMAG.2024.3490385","DOIUrl":"https://doi.org/10.1109/LMAG.2024.3490385","url":null,"abstract":"To address the prevalent issue of vibrations in long boring tools with a significant length-to-diameter ratio, we have developed a novel controllable damping boring tool. This innovative tool leverages the unique properties of magnetorheological elastomers (MREs) to counteract vibrations effectively. Using ANSYS software, we analyzed the magnetic field within the tool, revealing a direct link between excitation current and magnetic induction intensity within the MRE. Concurrently, experiments confirmed a strong correlation between magnetic induction and the MRE's elastic modulus, highlighting the material's tunable stiffness under varying magnetic fields. Further investigation through modal and harmonic response analyses has unveiled that augmenting the MRE's elastic modulus achieves two objectives. First, it raises the natural frequency of the boring tool. Second, and perhaps more importantly, it significantly diminishes the tool's response amplitude to vibrations. To illustrate, at an excitation current of 0 A, our measurements recorded a response amplitude of 0.31504 mm for the controllable damping boring tool. Furthermore, when the excitation current was increased to 1 A, the response amplitude was notably reduced to 0.1523 mm. These compelling results highlight the MRE controllable damping boring tool's exceptional dynamic adjustment capabilities and its remarkable efficacy in vibration suppression.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"15 ","pages":"1-5"},"PeriodicalIF":1.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142905879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A New Differential Magnetic Probe With Out-of-Phase Balun and Differential Loops 一种新型非相平衡差动磁探头
IF 1.1 4区 物理与天体物理
IEEE Magnetics Letters Pub Date : 2024-10-31 DOI: 10.1109/LMAG.2024.3490383
Lei Wang;Chenbing Qu;Rong Zhou;Zhangming Zhu
{"title":"A New Differential Magnetic Probe With Out-of-Phase Balun and Differential Loops","authors":"Lei Wang;Chenbing Qu;Rong Zhou;Zhangming Zhu","doi":"10.1109/LMAG.2024.3490383","DOIUrl":"https://doi.org/10.1109/LMAG.2024.3490383","url":null,"abstract":"In this letter, a new differential magnetic field probe with high sensitivity is presented. The differential magnetic probe includes a 180° out-of-phase balun, a pair of differential detection loops, and an output port with a 50 Ω impedance match. Unlike conventional magnetic probes with a single detection loop, a pair of differential detection loops is used to measure double magnetic-field components. Moreover, a 180° out-of-phase balun is utilized to process the differential-mode signals from these differential detection loops, which can make these probes directly connected to the oscilloscope and no longer rely on vector network analyzers. Finally, the differential magnetic probe is designed, simulated, and measured to verify the design effectiveness, and a near-field scanning system is used to characterize the developed probe. Measured results reveal that the designed differential magnetic probe not only can measure more magnetic-field energy, but also directly connect to the oscilloscope due to its own differential mode operation function in the out-of-phase balun. Therefore, the probe is very suitable for actual interference source location testing.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"15 ","pages":"1-5"},"PeriodicalIF":1.1,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142761395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exchange-Biased Multiring Planar Hall Magnetoresistive Sensors With Nanotesla Resolution in Nonshielded Environments 非屏蔽环境下具有纳特斯拉分辨率的交换偏压多线平面霍尔磁阻传感器
IF 1.1 4区 物理与天体物理
IEEE Magnetics Letters Pub Date : 2024-10-31 DOI: 10.1109/LMAG.2024.3490380
J. Schmidtpeter;Proloy T. Das;Y. Zabila;C. Schubert;T. Gundrum;T. Wondrak;D. Makarov
{"title":"Exchange-Biased Multiring Planar Hall Magnetoresistive Sensors With Nanotesla Resolution in Nonshielded Environments","authors":"J. Schmidtpeter;Proloy T. Das;Y. Zabila;C. Schubert;T. Gundrum;T. Wondrak;D. Makarov","doi":"10.1109/LMAG.2024.3490380","DOIUrl":"https://doi.org/10.1109/LMAG.2024.3490380","url":null,"abstract":"Planar Hall magnetoresistive sensors (PHMRs) are promising candidates for various magnetic sensing applications due to their high sensitivity, low power consumption, and compatibility with integrated circuit technology. However, their performance is often limited by inherent noise sources, impacting their resolution and overall sensitivity. Here the effect of three bilayer structures NiFe(10 nm)/IrMn(10 nm), NiFe(30 nm)/IrMn(10 nm), and NiFe(30 nm)/IrMn(20 nm) on noise levels is investigated at low frequency (DC-25 Hz). This study includes a detailed investigation on the optimization process and noise characteristics of multiring PHMR sensors, focusing on identifying and quantifying the dominant noise sources. The experimental measurements are complemented by a theoretical analysis of noise sources including thermal noise, 1/\u0000<italic>f</i>\u0000 noise, intermixing, and environmental noise. The best magnetic resolution is observed for the NiFe(30 nm)/IrMn(10 nm) structure, which achieves a detectivity below 1.5 nT/√Hz at 10 Hz in a nonshielded environment at room temperature. In addition, a substantial improvement in sensitivity is observed by annealing the sensors at 250 °C for 1 h. The findings of this study contribute to a deeper understanding of noise behavior in PHMR sensors, paving the way for developing strategies to improve their performance for demanding sensing applications at low frequencies.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"15 ","pages":"1-5"},"PeriodicalIF":1.1,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142798050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spintronic Neuron Using a Magnetic Tunnel Junction for Low-Power Neuromorphic Computing 利用磁隧道结的自旋电子神经元实现低功耗神经形态计算
IF 1.1 4区 物理与天体物理
IEEE Magnetics Letters Pub Date : 2024-10-24 DOI: 10.1109/LMAG.2024.3484957
Steven Louis;Hannah Bradley;Cody Trevillian;Andrei Slavin;Vasyl Tyberkevych
{"title":"Spintronic Neuron Using a Magnetic Tunnel Junction for Low-Power Neuromorphic Computing","authors":"Steven Louis;Hannah Bradley;Cody Trevillian;Andrei Slavin;Vasyl Tyberkevych","doi":"10.1109/LMAG.2024.3484957","DOIUrl":"https://doi.org/10.1109/LMAG.2024.3484957","url":null,"abstract":"This letter presents a novel spiking artificial neuron design based on a combined spin valve/magnetic tunnel junction (SV/MTJ). Traditional hardware used in artificial intelligence and machine learning faces significant challenges related to high power consumption and scalability. To address these challenges, spintronic neurons, which can mimic biologically inspired neural behaviors, offer a promising solution. We present a model of an SV/MTJ-based neuron that uses technologies that have been successfully integrated with CMOS in commercially available applications. The operational dynamics of the neuron are derived analytically through the Landau–Lifshitz-Gilbert–Slonczewski equation, demonstrating its ability to replicate key spiking characteristics of biological neurons such as response latency and refractive behavior. Simulation results indicate that the proposed neuron design can operate on a timescale of about 1 ns, without any bias current and with power consumption as low as 50 \u0000<inline-formula><tex-math>${mu }$</tex-math></inline-formula>\u0000W.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"15 ","pages":"1-5"},"PeriodicalIF":1.1,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142672079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信