GenomePub Date : 2025-01-01DOI: 10.1139/gen-2024-0136
Min Cheng, Jia Xu, Ying Li, Yaling Jian, Feng Yu
{"title":"Chromosome identification of <i>Medicago polymorpha</i> by oligonucleotide-based FISH.","authors":"Min Cheng, Jia Xu, Ying Li, Yaling Jian, Feng Yu","doi":"10.1139/gen-2024-0136","DOIUrl":"https://doi.org/10.1139/gen-2024-0136","url":null,"abstract":"<p><p><i>Medicago polymorpha</i> (2<i>n</i> = 2<i>x</i> = 14) is a valuable forage legume, but the identification of its somatic chromosomes has been challenging due to a lack of distinctive chromosome morphological features. With appropriate probes, oligonucleotide-based FISH is a highly effective method for chromosome identification. However, there are no available probes for <i>M. polymorpha</i>. In this study, we isolated five tandem repeats from the <i>M. polymorpha</i> genome, named Mp51, Mp139, Mp167, Mp179, and Mp497. Mp51 showed two pairs of signals located at the pericentromere. Mp139 exhibited four pairs of signals, located at the pericentromere and short arm of chromosomes. Mp167 and Mp179 showed seven pairs of signals, respectively, concentrated in the pericentromere. Mp497 exhibited three pairs of signals, distributed across the pericentromere and proximal position of the chromosomes. The combined FISH results of Mp51 and Mp139 oligo probes with 5S rDNA and 18S-26S rDNA probes demonstrated distinct signal patterns for each chromosome, enabling the precise identification of all chromosome pairs. Finally, the visual identification of <i>M. polymorpha</i> chromosomes was resolved. This will provide useful cytological information for studying the chromosomal structure and behavior of <i>M. polymorpha</i>.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":"68 ","pages":"1-8"},"PeriodicalIF":2.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143515477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
GenomePub Date : 2025-01-01DOI: 10.1139/gen-2024-0134
Antony T Vincent
{"title":"Evolutionary speed of proteins in the genus <i>Staphylococcus</i>: a focus on proteins involved in natural competence.","authors":"Antony T Vincent","doi":"10.1139/gen-2024-0134","DOIUrl":"10.1139/gen-2024-0134","url":null,"abstract":"<p><p>Bacteria in the genus <i>Staphylococcus</i> include human and animal pathogens. Although the genomic diversity of these bacteria is increasingly well characterized, the rate of protein evolution in staphylococci remains poorly understood. In this study, the genomic sequences of one representative from each of the 63 <i>Staphylococcus</i> species were downloaded from the RefSeq database. Homologous protein sequences were identified, and their evolutionary rates were inferred using a phylogenetic approach. The results demonstrated that some proteins evolve significantly faster than others, with several being involved in DNA-mediated transformation. Further analyses of the genomic sequences revealed that the evolutionary rate of proteins is correlated with codon adaptation of their genes, and that certain protein regions are more prone to accumulating mutations. This study highlights the more rapid evolution of specific proteins in staphylococci, likely reflecting the host diversity of these bacteria and their high adaptive capacity.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":" ","pages":"1-8"},"PeriodicalIF":2.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143624310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
GenomePub Date : 2025-01-01Epub Date: 2024-12-12DOI: 10.1139/gen-2024-0084
Rangasai Chandra Goli, Karan Mahar, Kiyevi G Chishi, Sonu Choudhary, Pallavi Rathi, Chandana Chinnareddyvari Sree, Pala Haritha, Nidhi Sukhija, K K Kanaka
{"title":"Runs of homozygosity assessment using reduced representation sequencing highlight the evidence of random mating in emu (<i>Dromaius novaehollandiae</i>).","authors":"Rangasai Chandra Goli, Karan Mahar, Kiyevi G Chishi, Sonu Choudhary, Pallavi Rathi, Chandana Chinnareddyvari Sree, Pala Haritha, Nidhi Sukhija, K K Kanaka","doi":"10.1139/gen-2024-0084","DOIUrl":"10.1139/gen-2024-0084","url":null,"abstract":"<p><p>The domestication of emu (<i>Dromaius novaehollandiae)</i> began in the 1970s, but their productive characteristics have not undergone significant genetic enhancement. This study investigated the inbreeding and genetic diversity of 50 emus from various farms in Japan using Double digest restriction-site associated DNA sequencing (ddRAD-seq) markers. Single nucleotide polymorphism (SNP) calling revealed 171 975 high-quality SNPs while runs of homozygosity (ROH) analysis identified 1843 homozygous segments, with an average of 36.86 ROH per individual and a mean genome length of 27 Mb under ROH. The majority (86%) of ROH were short (0.5-1 Mb), indicating ancient or remote inbreeding. The average genomic inbreeding coefficient (<i>F</i><sub>ROH</sub>) was 0.0228, suggesting nearly no inbreeding. Overlapping ROH regions were identified, with top consensus regions found on chromosomes 8 and Z. Seven candidate genes related to egg production, feather development, and energy metabolism were annotated in these regions. The findings highlight the prevalence of genetic diversity and low inbreeding levels in the studied emu population. This research highlights the potentiality of random mating in genetic management and conservation of emus. Further studies should focus on enhancing productive traits through selective breeding while preserving genetic diversity to ensure the sustainable growth of the emu farming.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":" ","pages":"1-8"},"PeriodicalIF":2.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142817788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
GenomePub Date : 2025-01-01DOI: 10.1139/gen-2024-0165
Luciano Cesar Pozzobon, Gustavo Akira Toma, Marcelo de Bello Cioffi, Edivaldo Herculano Corrêa de Oliveira, Rafael Kretschmer, Thales Renato Ochotorena de Freitas
{"title":"Karyotype evolution of suliformes and description of a ♂Z<sub>1</sub>Z<sub>1</sub>Z<sub>2</sub>Z<sub>2</sub>/♀Z<sub>1</sub>Z<sub>2</sub>W multiple sex chromosome system in boobies (<i>Sula</i> spp.).","authors":"Luciano Cesar Pozzobon, Gustavo Akira Toma, Marcelo de Bello Cioffi, Edivaldo Herculano Corrêa de Oliveira, Rafael Kretschmer, Thales Renato Ochotorena de Freitas","doi":"10.1139/gen-2024-0165","DOIUrl":"10.1139/gen-2024-0165","url":null,"abstract":"<p><p>Our comprehension of avian karyotypes still needs to be improved, especially for Suliform birds. To enhance understanding of chromosomal evolution in this order, we conducted conventional and molecular cytogenetic analysis in five species, named <i>Sula dactylatra</i>, <i>Sula</i> <i>leucogaster</i>, <i>Sula sula</i> (Sulidae), <i>Fregata magnificens</i> (Fregatidae), and <i>Nannopterum brasilianum</i> (Phalacrocoracidae). The diploid chromosome number for <i>S. dactylatra</i> and <i>S. leucogaster</i> was established as 2<i>n</i> = 76 in males, and 2<i>n</i> = 75 in females, but <i>S</i>. <i>sula</i> displayed a karyotype of 2<i>n</i> = 76 chromosomes in males. The disparity in diploid chromosome numbers between male and female <i>Sula</i> is due to a multiple sex chromosome system of the Z<sub>1</sub>Z<sub>1</sub>Z<sub>2</sub>Z<sub>2</sub>/Z<sub>1</sub>Z<sub>2</sub>W type. We propose that the emergence of this multiple-sex chromosome system resulted from a Robertsonian translocation involving the W chromosome and the smallest microchromosome. <i>Fregata magnificens</i> exhibited a diploid number 76 (2<i>n</i> = 76), while <i>N. brasilianum</i> displayed a diploid number of 74 (2<i>n</i> = 74) in both sexes. The ribosomal cluster was located in one microchromosome pair in <i>S. dactylatra</i>, <i>S. leucogaster</i>, <i>S. sula</i>, and <i>F. magnificens</i> and in four pairs in <i>N. brasilianum</i>. Our findings provide evidence of a conserved multiple-sex chromosome system within the <i>Sula</i> genus, shedding light on the high karyotype diversity in Suliformes.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":" ","pages":"1-11"},"PeriodicalIF":2.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143064945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Empowering canine genomics: design and validation of a high-density SNP array for Indian dogs.","authors":"Raja Kolandanoor Nachiappan, Reena Arora, Ramesh Kumar Vijh, Upasna Sharma, Meenal Raheja, Manisha Sharma, Mehak Maggon, Sonika Ahlawat","doi":"10.1139/gen-2024-0094","DOIUrl":"10.1139/gen-2024-0094","url":null,"abstract":"<p><p>India harbors a substantial population of 9.43 million dogs, showcasing diverse phenotypes and utility. Initiatives focusing on awareness, conservation, and informed breeding can greatly enhance the recognition and welfare of the unique Indian canine heritage. This study describes the design and development of a high-density SNP array for genomic characterization of Indian dogs. Paired-end (150 bp) DNA sequences of 48 samples from four diverse dog populations were generated with 10× coverage, following the standard pipeline of Axiom Array technology for chip design. More than 23 million raw SNPs were initially identified, with 629 597 SNP markers ultimately tiled on the Indian canine array (<i>Axiom_Shwaan</i>) after stringent filtering and processing. With an inter-marker distance of 3.8 kb the <i>Axiom_Shwaan</i> greatly increases the canine genome coverage. The array was validated by genotyping 186 samples representing 11 dog breeds/populations from India. The high call rate (99%) of SNPs on the designed chip indicates its suitability for use in Indian dog populations, reflecting sufficient genetic diversity. The principal component and phylogenetic analyses delineated the native dog breeds into discrete groups. This high-density SNP array will empower future applications in population genetics, breed/selection signature identification, development of trait-specific biomarkers, and genome-wide data mining for various canine abilities.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":" ","pages":"1-12"},"PeriodicalIF":2.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143051636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
GenomePub Date : 2025-01-01Epub Date: 2024-10-29DOI: 10.1139/gen-2024-0085
Rodrigo Zeni Dos Santos, Caio Augusto Gomes Goes, José Henrique Forte Stornioli, Francisco de Menezes Cavalcante Sassi, Renata Luiza Rosa de Moraes, Jorge Abdala Dergam, Fábio Porto-Foresti, Marcelo de Bello Cioffi, Ricardo Utsunomia
{"title":"Comparative satellite DNA mapping in species of the genus <i>Prochilodus</i> (Teleostei, Characiformes) and its evolutionary implications.","authors":"Rodrigo Zeni Dos Santos, Caio Augusto Gomes Goes, José Henrique Forte Stornioli, Francisco de Menezes Cavalcante Sassi, Renata Luiza Rosa de Moraes, Jorge Abdala Dergam, Fábio Porto-Foresti, Marcelo de Bello Cioffi, Ricardo Utsunomia","doi":"10.1139/gen-2024-0085","DOIUrl":"10.1139/gen-2024-0085","url":null,"abstract":"<p><p>Satellite DNA (satDNA) sequences are dynamic components of the eukaryotic genome that can play significant roles in species diversification. The Prochilodontidae family, which includes 21 Neotropical fish species, is characterized by a conserved karyotype of 2<i>n</i> = 54 biarmed chromosomes, with variation in some species and populations regarding the presence or absence of B chromosomes. This study aimed to investigate whether the chromosomal distribution of specific satDNA sequences is conserved among three <i>Prochilodus</i> species (<i>Prochilodus lineatus, Prochilodus costatus</i>, and <i>Prochilodus argenteus</i>) regarding organization and number of <i>loci</i>, and to compare their genomes using comparative genomic hybridization (CGH). Our results demonstrated that most satDNA sequences share a similar distribution pattern across the three species, and CGH analysis corroborated that their karyotypes are very similar in terms of repetitive DNA distribution. We also identified a potential CENP-B box sequence within PliSat01, a satDNA located in the pericentromeric region of all analyzed species. In contrast, PliSat04 and PliSat14 displayed differential locations and variations in the number of <i>loci</i> per genome, underscoring the dynamic nature of repetitive sequences even in species with otherwise highly conserved genomes. These findings represent the first evidence of karyotype diversification in <i>Prochilodus</i>, highlighting the evolutionary dynamism of satDNA sequences.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":" ","pages":"1-8"},"PeriodicalIF":2.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142545116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
GenomePub Date : 2025-01-01Epub Date: 2024-12-12DOI: 10.1139/gen-2024-0121
Sarah Dada, Katherine Dixon, Vahid Akbari, Cameron J Grisdale, Kristina Calli, Sally Martell, Caralyn Reisle, Amanda Lillico-Ouachour, M E Suzanne Lewis, Steven J M Jones
{"title":"Uncovering the complexity of structural variants in four individuals with autism spectrum disorder.","authors":"Sarah Dada, Katherine Dixon, Vahid Akbari, Cameron J Grisdale, Kristina Calli, Sally Martell, Caralyn Reisle, Amanda Lillico-Ouachour, M E Suzanne Lewis, Steven J M Jones","doi":"10.1139/gen-2024-0121","DOIUrl":"10.1139/gen-2024-0121","url":null,"abstract":"<p><p>Autism spectrum disorder (ASD) is an increasingly recognized childhood developmental disorder. Despite extensive study, causal variants and molecular diagnosis remain elusive. There is both heterogeneity of the phenotype, as well as the genetic landscape associated with phenotype, which includes both inherited and de novo mutations. Currently, diagnosis is complex and behaviourally based, oftentimes occurring years after the ideal 1-2 years of age. Structural variants (SVs) are large and sometimes complex genomic variants that are likely underrepresented contributors to ASD due to the limitations of short-read DNA sequencing, such as alignment in repetitive regions and regions with GC bias. Here, we performed long-read sequencing (LRS) on four individuals with autism spectrum disorder to delineate SV complexity and determine precise breakpoints for SVs, which was not possible with short-read whole-genome sequencing (SRS). We use LRS to interrogate the methylation pattern associated with the SVs and phase the SV haplotypes to further clarify their contribution to disorder. LRS allows insight into the genome and methylome that allow us to uncover variant complexity and contribution that was previously unseen with SRS. Ultimately, this furthers precision diagnosis and contributes to individualized treatment for affected individuals and their families within the clinic.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":" ","pages":"1-8"},"PeriodicalIF":2.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142817789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
GenomePub Date : 2025-01-01DOI: 10.1139/gen-2024-0090
Tatiana V Danilova, Alina R Akhunova, Xiwen Cai
{"title":"Comparative analysis of <i>Aegilops speltoides</i> and wheat repetitive elements and development of S genome-specific FISH painting.","authors":"Tatiana V Danilova, Alina R Akhunova, Xiwen Cai","doi":"10.1139/gen-2024-0090","DOIUrl":"10.1139/gen-2024-0090","url":null,"abstract":"<p><p><i>Aegilops speltoides</i> (2<i>n</i> = 2<i>x</i> = 14, genome SS) is a wild relative of wheat and a donor of useful traits for wheat improvement. Several whole-genome studies compared genic regions of <i>Aegilops</i> from the <i>Sitopsis</i> section and wheat and found that <i>Ae. speltoides</i> is most closely related to the wheat B subgenome but is not its direct progenitor. The results showed that a B subgenome ancestor diverged from <i>Ae. speltoides</i> more than 4 MYA and either has not yet been discovered, or is extinct. To further explore the evolutionary relationship between wheat and <i>Ae. speltoides</i> and develop <i>Ae. speltoides</i> chromosome paints, we performed comparative analysis of repetitive fractions of the S genome and three subgenomes of hexaploid wheat. The low-coverage sequence data were analyzed with RepeatExplorer pipeline to annotate repeats and estimate their content. The LTR-retrotransposons comprised about 80% of repeats in <i>Ae. speltoides</i> and wheat datasets and about two-third of them were LTR/Ty3-Gypsy. <i>Ae. speltoides</i> had 1.5 times more LTR/Ty-Copia repeats and 1.5 times less DNA transposons than wheat subgenomes. Several S genome-specific dispersed repeats were found and annotated. Their sequences were used to develop S genome-specific paints for detecting <i>Ae. speltoides</i> chromatin in the wheat background using fluorescent in situ hybridization.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":" ","pages":"1-12"},"PeriodicalIF":2.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143064944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
GenomePub Date : 2025-01-01DOI: 10.1139/gen-2024-0172
{"title":"Note of appreciation.","authors":"","doi":"10.1139/gen-2024-0172","DOIUrl":"https://doi.org/10.1139/gen-2024-0172","url":null,"abstract":"","PeriodicalId":12809,"journal":{"name":"Genome","volume":"68 ","pages":"1"},"PeriodicalIF":2.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143004406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
GenomePub Date : 2025-01-01Epub Date: 2024-10-29DOI: 10.1139/gen-2024-0098
Mohsen Hesami, Marco Pepe, Ben Spitzer-Rimon, Milad Eskandari, Andrew Maxwell Phineas Jones
{"title":"Epigenetic factors related to recalcitrance in plant biotechnology.","authors":"Mohsen Hesami, Marco Pepe, Ben Spitzer-Rimon, Milad Eskandari, Andrew Maxwell Phineas Jones","doi":"10.1139/gen-2024-0098","DOIUrl":"10.1139/gen-2024-0098","url":null,"abstract":"<p><p>This review explores the challenges and potential solutions in plant micropropagation and biotechnology. While these techniques have proven successful for many species, certain plants or tissues are recalcitrant and do not respond as desired, limiting the application of these technologies due to unattainable or minimal in vitro regeneration rates. Indeed, traditional in vitro culture techniques may fail to induce organogenesis or somatic embryogenesis in some plants, leading to classification as in vitro recalcitrance. This paper focuses on recalcitrance to somatic embryogenesis due to its promise for regenerating juvenile propagules and applications in biotechnology. Specifically, this paper will focus on epigenetic factors that regulate recalcitrance as understanding them may help overcome these barriers. Transformation recalcitrance is also addressed, with strategies proposed to improve transformation frequency. The paper concludes with a review of CRISPR-mediated genome editing's potential in modifying somatic embryogenesis-related epigenetic status and strategies for addressing transformation recalcitrance.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":" ","pages":"1-11"},"PeriodicalIF":2.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142545117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}